AUSTRALASIAN ANTARCTIC EXPEDITION PAMPhlet non-яccountable

Under the leadershíp of sir douglas mawson, o.b.e., b.e., d.sc., f.r.s. STK APR 1957

SCIENTIFIC REPORTS.
SERIES B.
VOL. 1 .

TERRESTRIAL MAGNETISM AND RELATED OBSERVATIONS.

PART II.

MACNETIC DISTURBANCE

AND ITS RELATIONS TO

AURORA

BY^{-}
CHARLES CHREE, M.A., SC.D., LL.D, F.R.S.

WITH: FIFTY-SIX TABLES.

PRICE: FIFTEEN SHILLINGS.

MACNETIC DISTURBANCE AND ITS RELATIONS TO AURORA. BY

CHARLES CHREE, Sc.D.; LبL.D.; F.R.S.

CONTENTS.

CHAPTER I--DAILY CHARACTER FIGURES.
section.
1 International character figures and corresponding figures at Cape.Denison and Cape Evans 197
2 International quiet and disturbed days 198
3 Comparison of international and Cape Denison character figures 199
4 Analysis of international, Cape Denison and Cape Evans character figures 200
5 27-day interval at Cape Denison 201
CHAPTER II--SQUARES OF DAILY AND HOURLY-RANGES AS DISTURBANCE CRITERIA.
section.
6 Criteria of disturbance, magnetic " activity"... - 206
7 Special features at Cape Denison, disturbance criteria employed 208
8 General explanation of tables of squares of daily ranges and character ratios $\quad . . . \quad \cdots \quad \cdots \quad \cdots$ 210
9 Peculiarities in the tables of squares of daily ranges 211
10 Differences between results from horizontal and vertical components 212
11. Comparative amplitudes of disturbance at Cape Denison, Cape Evans and Eskdalemuir 215
12 Further discussion of disturbance. Differences between stations 215
13 Mean monthly values of disturbance criteria 227
14 Comparison of international character figures and absolute values of dis- turbance criterion at Cape Deniison 222
15 Comparison of internationall character figures and Cape Denison character ratios 223
10 Investigation whether vertical force disturbance is of a specially local character 228
17 Disturbance criteria involving squares of daily ranges and squares of hourly ranges compared 225
2032-A
. ... CHAPTER III.-HOURLY CHARACTERS-DIURNAL VARIATION OF DISTURBÄNCE.
sECTION page.
18 Daily and mean of hourly characters at Cape Denison 245
19 Diurnal variation of disturbance derived from hourly characters at Cape Denison 248
20 Diurnal variation of disturbance derived from hourly characters at Cape Evans 250
21 Diurnal variation of disturrbance derived from hourly characters at Eskdalemuir 251
22 Comparison of disturbance diurnal variations at different stations 253
23 Noteworthy differences in disturbance during individual hours at different stations 254
24 Comparison of largest and mêan hörrly rặnges and daily range 258
25 Diurnal variations of disturbance derived from hourly ranges 259
CḦAPTEZR IV.--AURORA ÅND MAGNETİC DISTURBANCE.
section.
26. General reflections 285
27 Inter-relationships of hourly auroral and magnetic characters 286
28 Aurora in the zenith 287.
29 Expectation of magnetic disturbance in hours when aurora can and cannot be seen 288
30 Occasions of bright aurora and accompanying magnetic disturirbance 290
31 gunalysis of cases of bright aurora and corresponding magnetic ranges 294
32 Cases of coloured aurora selected by Sir D. Mawson and corresponding disturbance 296
LIST OF TABLES 329

CHAPTER I.-DAILY CHARACTTER FIGURES.

§ 1. As is well known, magnetic disturbance is not in general a local phenomenon. \dot{A} day that is highly disturbed anywhere in ordinary latitudes is highly disturbed everywhere, and similar remarks apply to specially quiet conditions. An international scheme exists for the characterisation of days, and for the selection for each month of the five days most representative of quiet conditions, and the five days most representative of disturbance. Each of the co-operating observatories, some forty at present, sends to De Bilt; Netherlands, its estimate of the disturbance shown by its magnetic curves on the scale 0 quiet, 1 moderately disturbed, 2 highly disturbed. The arithmetic mean of these estimates, as calculated at De Bilt, is regarded as a character figure measuring the disturbance of the day. These character figures run from 0.0 , representing the quietest of conditions, to $2 \cdot 0$, the most highly disturbed. A selected quiet day seldom has a character figure exceeding $0 \cdot 2$, and the character figure of a selected disturbed day usually exceeds $1 \cdot 0$, but in a quiet year like 1913 it may be as small as 0.8 or even 0.7 . At the year's end a list is issued from De Bilt which gives the character figure for each day, with particulars of the selected quiet and disturbed days.

The mode of attaching character figures is not the same at all stations. The quickest plan, though it may not tend to the maintenance of a uniform standard, is to be guided by the greater or less general irregularity of the trace. The daily range of any magnetic elément varies with the season of the year, being usually much smailer at mid-winter than at mid-summèr. Speaking generally, distiurbance increãases the daily range, and if aliowance can be made for the annual variation, the range can be used as à criterion of disturbance. A niethod of doing this is considéred läter. But the method, the results of which we shall first consider, was to assign character figureg $0,1,2$ according to the general appearance of the trace, 0 representing few irregular short period oscillations, and none of them large at any time of the day, and 2 representing large irregular oscillations during part at least of the day. 1 represented interiñediate conditions. As the object was partly to descriminate between the days of the month, the standard would naturally vary somewhat, the tendency being for 1 to represent more disturbed conditions in a disturbed than in a quiet month.

The character figures thus arrived at for each (Greenwich) day from March 22 1912, to August 7, 1913, appear in Table XVIII. Up to November 18, 1912, three character figures are given for each day. The first is that assigned at Cape Denison: and the third is that assigned at Cape Evans (the base station of the Scott 'Expedition), both on the scale 0, 1,2 just described. The intermediate figure is the international character assigned at De Bilt. For example, the international figure for March 22, 1912, was 0.8 , while the character figures, based on the Cape Denison and Cape Evans curves, were respectively 1 and 2. Subsequient to November 18, 1912 only the Cape Denison and international figures are given.

Occasions are numerous when one hesitates between a 0 and a 1 , or between a 1 and a 2. The Cape Denison and Cape Eyans figures were both assigned by myself, but years elapsed between the two operations, and I thought it best not to consult the Cape Evans curves or the Cape Evans statistics whilst making the choice for Cape Denison. One's choice is no doubt influenced by the sensitiveness of the magnetographs. Short period oscillations which appear imposing on a highly sensitive trace, e.g., one in which 1 mm . of ordinate answers to $1 \gamma(0.00001$ C.G.S.), may look trifing on a trace in which 1 mm . represents 10%. Scale values in the H (horizontal force) and V (vertical force) instruments at Cape Denison were a good deal more variable than those of any of the Cape Evans instruments. This would naturally tend to make the magnetic character standard more variable at the former station than at the latter.

There was only one common element, V, at the two stations. In September to November, 1912, the two V instruments had much the same sensitiveness. At other times the Cape Denison instrument was the more sensitive, and at times its sensitiveness was double that of the other. The two other Cape Evans instruments measured two rectangular horizontal components of force, one N^{\prime} departing some $7 \frac{1}{2}^{\circ}$ from geographical north, the other E^{\prime} departing an equal amount from geographical east. The sensitiveness in both these instruments was very similar to that of the H instrument at Cape Denison from July to November, 1912, but in May and June, 1912, the H instrument was much more sensitive than the Cape Evans instruments. The D (deçination) instrument at Cape Denison, regarded as a measurer of changes of force, was much the most sensitive of all the instruments. On the ordinary day the D oscillations at Cape Denison looked enormous as compared with the synchronous oscillations in any of the Cape Evans curves. This would naturàlly have led to larger character figures for Cape Denison than for Cape Evans if I had allowed as much weight to the D curves as to the others. As a matter of fact, when good H and V curves were available - the behaviour of the V magnetograph was not always satisfactory-I allowed very little weight to the D curves, but during December, 1912, and the early part of January, 1913, they alone existed.
§ 2. Table XIX gives the dates of the international quiet days, and of the days which according to the international character figures were the five most disturbed days of each month. For brevity these latter days will be described as the international disturbed days, though the practice of a formal international choice of disturbed days was not adopted until subsequent to 1913. Table XIX also contains the Cape. Denison character figures for the international quiet and disturbed days. A glance suffices to show how thoroughly representative the international days are even in high southern latitudes. Of the 46 international disturbed days of 1912 included, 43 got character 2. Of the 35 disturbed days of 1913,10 got character 1 . But in the two last months, June and July, only two days were assigned character 2 , and both days are included in Table XIX. No'international disturbed day, it will be observed, got a 0 . Of the 83 international quiet days included in Table XIX, 43 were awarded 0 , and only one,

December 2, was awarded a 2. Only D curves, it will be remembered, were available for December, and as 18 of the 30 days for which records existed got a 2 , and none got a 0 , much significance cannot be attached to this one exception. Still it shows that occasionally considerable disturbance may prevail in high latitudes on days which in ordinary latitudes are more than usually quiet.

There are several examples in Table XIX of the tendency to runs of successive disturbed or quiet days. March and May, 1913, show sequences of disturbed days, while July, 1912, and April and May; 1913, show sequences of quiet days.

Table XIX also affords examples of the 27 -day recurrence interval in magnetic conditions. An example of the recurrence of a magnetic storm at the 27 -day interval is afforded by the sequence December 23, 1912, and January 19, February 15, March 14, April 10, May 7 and June 3, 1913. An apparent 27 -day recurrence of quiet conditions is afforded by June 15, July 12 and August 8, 1912. This subject is considered further presently.
§ 3. Table XX gives the monthly means of the Cape Denison and the international character figures for all days of the month, and for the international quiet and disturbed days. According to the international figures the 16 months included in Table XX did not differ much as regards disturbance. April, 1913, had the highest character figure 0.54 , and July, 1912, the lowest, 0.41 . According to the international figures November, 1912, to January, 1913, was not a specially disturbed timé, and there was little difference between May, June and July, 1912, and May, June and July, 1913. The Cape Denison figures, on the other hand, show a large apparently seasonal fluctuation, mid-summer-November to January-having "much larger character figures than mid-winter-May to July. Also from April to July, the mean characters are much larger for 1912 than for 1913.

Table XXI aims at showing more minutely how the relation between the Cape Denison and the international character figures varied with the season of the year. Results are given for all the days available (A), and for the days falling in three seasons Winter (W), May to August, 1912, and 1913, Equinox (E) represented by September and October, 1912, and March and April, 1913, and Summer (S) consisting of the four months, November, 1912, to February, 1913. March and April days in 1912 were included in "All" days, but not in the "Equinox," where they were omitted with" a view to having as nearly as possible the same mean date for the three seasons. What Table XXI gives is the number of occasions when a specified Cape Denison character figure, 2 , 1 , or 0 , was associated with certain international character figures. The international figures were collected into seven groups, so as to include a moderate number of days in cach group. The first group, including all days with characters, 0.0 or 0.1 , contained in all 139 days. The character figures assigned to these days at Cape Denison were on 5 days 2, on 63 days 1 , and on 71 days, being a clear majority 0 .

Of these 139 days, 59 were winter days, and of these 17 got a 1 , and 42 a at Cape Denison. Of the balance of $139-59$ or 80 days, 31 occurred in the equinoctical seasson, 36 in the summer season, and the remainder in March or April, 1912. As the international figure goes up, the proportion of days getting a 0 at Cape Denison dimininishes. No summer day with international character exceeding 0.1 gets a 0 at Cape Denison; and no day with international character exceeding 0.7 getes a 0 at any season. The majority of days with internạtional characters exceeding 0.7 get ą 2 at Cape Denisoṇ, and all days of the final group, i.e., international character $1 \cdot 5$ or more, get a 2 .

The last four columns of Table XXI give the arithmetic means of the Cape Denison character figures for each of the seven groups of international characters. For example, if we take the days when the international figure was 0.2 or 0.3 , the corresponding mean Cape Denison character figure was 0.91 for all days, 0.62 for the eight winter months, 0.97 for the four equinoctical months, and 1.53 for the four sumner months. The difference between the figures for the equinoctical months and for all months is ustially small. The difference between the summer and winter seasons is pronounced only when the international character figure does not exceed $0 \cdot 7$, but for the lower classes it is very large indeed:
§4. Table XXII in its last six columns shows another aspect of the picture presented by Table XXI. Dividing the days of each month into three groups according as the Cape Denison character figure was 2,1 or 0 , it gives for each group the corresponding mean international character figure. The first three columns give the corresponding means of the Cape Evans character figures for the seven complete months for which there were records from both stations.

It will be seen that the mean international character figure for the days which were assigned character 0 at Cape Denison shows only minor fluctuations from month to month, and is practically the same for 1912 and 1913: But the mean international character figure answering to 1 or to 2 at Cape Denison shows a conspicuous seasonal variation, and the value for 1913 notably exceeds that for 1912. The exact significance of these differences is open to a certain amount of doubt. Compare, for example, November, 1912, and April, 1913. The average day getting a 2 at Cape Denison in November, 1912, had an international character figure of 0.66 , while the average day getting a 2 at Cape Denison in April, 1913, had an international character figure of $1 \cdot 17$. The result might mean a change in the standard at Cape Denison, 2 being awarded for much smaller disturbance in November, 1912, than in April, 1913. Or it might mean a change in the international standard, the same amount of disturbance getting a higher character figure in 1913 than in 1912. But it might miean that, relative to the world at large, Cape Denison was much more highly disturbed during November, 1912, than during April, 1913. There may have been other contributory causes, but the last is, I think, essentially the real explanation. Disturbance has a very pronounced seasonal variation in the Antarctic, summer being the time of maximum. This being winter
in the northern hemisphere is a decidedly less disturbed time than the equinoctical season at the great majority of the stations which take part in the international scieme: As to à difference between 1912 and 1913, no one with the Cape Denison curves before him couild fail to see the relative quietness of the winter months of 1913.

The figures in Table XXII for Cape Denison and Cape Evans show only irregular variations in the niean Cape Evans figure corresponding to character 2 at Cape Denison: But the mean Cape Evans figures answering to 1 and to 0 at Cape. Denison show a decided tendency to be larger in the later months. More light is thrown, on this subject by T'able XXIII which represents the facts in a different way. : Take April, for example: The 14 days awarded 2 at Cape Denison obtained seven 2's, four l's and three 0 's at Cape Evans. The 11 days awarded 1 at Cape Denison obtained three 1's and eight 0 's at Cape Evans, and finally the 5 days awarded 0 at Cape Denison obtained òne 1 and four 0 's at Cape Evañs.

The most outstanding result in Table XXII was the high value $0 ; 75$ of the Cape Ēvans figure in October corresponding to character 0 at Cape Denison.. But Table XXIII tells us that in October, 0 was awarded to only four days at Cape Denison and one day at Cape Evans, so the significance of that particular figure is not great.

Returning to a consideration of Table XXIII we see that fully two thirds of the days which got a 0 at Cape Denison also got a 0 at Cape Evans, the remander getting a 1. Of the 83 days awarded 2 at Cape Denison fully half also got 2 at Cape Evans the rest obtained 1 at Cape Evans, with the exception of three April days; the $4 t h ; 13$ th, and $\hat{2} 3$ rd, which got 0 . These were days of international character 0.2 or 0.3 , so that what we shouild have expected at both Antarctic stations is a 1. Inspection of the curves shows in fact that it was a toss up between a 0 and a 1 at Cape EVians, and between $\dot{a} 1$ añ à a 2 at Cape Denison. Even in the horizontal components the Cape Denison range was decidedly greater on all three days, but it was the excess of the V range at Cape Denison that was really décisive. The associations in Table XXẌİİ of 1 at Cape D̈enison with 0 at Cape Evans are twice as numerous as the associations of 0 at Cape Denison with 1 at Cape Evans, and the associations of 2 at Cape Denison with 1 at Cape Evàns are immensely more numerous than the associations of 1 at Cape Denison with 2 at Cape Evans. : It is thus clearly apparent that either Cape Denison was a decidedly more disturbed station than Cape Evans, or else the standard of disturbance applied to the former station was decidedly the lower.
§ 5. The character figures were utilised for the purpose of seeing whether the 27 -day interval in magnetic conditions manifested itself at Cape Denison. The international disturbed and quiet days were accepted as representative of disturbed and quiet conditions. The Cape Denison character figures for each of these disturbed days and for the two immediately preceding and immediately succeeding days were entered in five columns headed $n-2, n-1, n, n+1$, and $n+2$. Thus the entries in:
'columens $n-1$ and $n+1$ referred to days which were respectively one day earlier and one day later than a representative disturbed day, the character of which was entered in column n. This was done for each of the 75 international disturbed days of the 15 months, April, 1912, to June, 1913. The sum of the 75 entries in each column furnished the primary disturbance pulse. The secondary disturbance pulse was obtained from the sums of the characters of the associated days in the six columns headed $n+25$ to $n+30$. The 75 days, for example, which contributed to column $n+25$ were each 25 days later than one of the selected disturbed days. Take for instance the earliest of the disturbed days; April 5, 1912. "The days whose character figures appeared in the columns headed $n-2$ to $n+2$ were April 3, 4, 5, 6 and 7 ; while the days whose character figures appeared in the columns headed $n+25$ to $n+30$ were April 30 , and May 1, 2, 3, 4 and 5 .

The selected quiet days and the days associated with them were treated in a precisely similar fashion, thus supplying primary and secondary quiet day pulses. The selected days ceased with June, 1913, because the days associated with selected July days would möstly have been Aügist days for which no Cape Denison figures existed. The results of the operations appear in Table XXIV. The mean Cape Denison character figure for the whole 16 months was 1.08 and the corresponding sum for 75 days is 81 . Thus difference from 81 in the figures in Table XXIV may be regarded as indicative of ?more than normal disturbance or of more than normal quietness, according as their sign is positive or negative. In strictness, however, the days in the primary pulse all come from the first 15 months for which the mean character figure was $1 \cdot 12$ while the days from the secondary pulse with three exceptions come from the last 15 months for which the mean character figure was 1.07 . Thus 81 is only an approach to the figure appropriate to the average day. This uncertainty is practically avoided by taking the difference pulse.

The crest of the primary difference pulse, like the crests of the primary disturbed and quiet day pulses, necessarily comes in day n. The crest of the secondary difference pulse occurs unmistakeably on day $n+27$. The amplitudes of the primary and secondary difference pulses are respectively 101 and 42 , so that the latter is 42 per cent. of the former. In the case of the Cape Evans character figures for 1911 and 1912, the amplitude of the secondary difference pulse was 43 per cent. of that of the primary pulse. Thus the results from the two stations are remarkably similar. If we may judge by 1911, 1912 and 1913, the 27 -day interval is at least as prominent in the Antarctic as in ordinary latitudes.

Table XVIII-Daily Character, Cape Denison, International and Cape Evans Figures:

																										\cdots 1913.															
¢	March.		April.			May.		June:			July.		Augı3s.			September.		er.	October.		November.			December.		January.		February.		March.		April.		May.		June.		July.		Augu:	
1				$10 \cdot 1$	01	$10 \cdot 1$	1	21	1.0	22	20	$0 \cdot 3$	1	0.9	2	10	$0 \cdot 3$	12		2	2	$0 \cdot 4$	1	2	$0 \cdot 3$	1	$0 \cdot 0$	1	$0 \cdot 3$	0	. $0 \cdot 0$	2	0.9		0	1		1	$0 \cdot 6$	0	$0 \cdot 1$
2				0.3	01	10.5	1	20	0.8	20	0	$0 \cdot 2$	- 1	10.3	1		$0 \cdot 10$	01		1	1	0.5	2	2	1.0	1	1.0	1	$0 \cdot 1$	0	$0 \cdot 0$	1	$0 \cdot 2$	1	$0 \cdot 4$	2	1.0	0	$0 \cdot 3$	0	0.2
3				0.4	11	$10 \cdot 6$	1.	20	0.8	2	20	$0 \cdot 91$	1.1	10.2	1	10	$0 \cdot 6$	$0 \cdot 1$	$10 \cdot 6$	1	1.	$0 \cdot 0$	1	2	0.7	?	1.4	0	$0 \cdot 0$	0	$0 \cdot 4$	1	0.4	1	$0 \cdot 6$	1	0.8	1	$0 \cdot 4$	1	$0 \cdot 3$
4				20.3	01	$1{ }^{1} 0.5$	1	10	$0 \cdot 2$	0	21	$1 \cdot 32$	20	0 0.0	0	90	0.71	11	$10 \cdot 3$	1	1.	$0 \cdot 1$	1	2	0.0	2	0.8		$0 \cdot 0$	1	$0 \cdot 3$	1	$0 \cdot 6$	2	1.4	1	0.8	0	$0 \cdot 1$	0	0.5
5				2 1.3	2.	2 . $1 \cdot 3$	2	10	$0 \cdot 0$	0	21	1.2	22	20.9	1		0.51	10	0 0.0	1	2	0.7	2	1	0.0	1	$0 \cdot 4$	1	$0 \cdot 0$	1	$0 \cdot 1$	1	$0 \cdot 2$	2	14	0	0.2	0	0.2	0	$0 \cdot 2$
6	,			2 1.0	22	20.9	1	0 0	0.1	12	20	0.7	12	2 1.7	1	10	$0 \cdot 41$	11	$10 \cdot 1$	1	1	$0 \cdot 6$	-	2	1.0	2	$0 \cdot 1$	1	0.2	1	$0 \cdot 1$	0	$0 \cdot 1$	2	1.3	1	0.0	0	$0 \cdot 3$	0	$0 \cdot \frac{1}{5}$
7				2 0.8	12	20.8	1	0	0.6	0	20	$0 \cdot 6$	11	10.5	1	0	$0 \cdot 11$	11	10.1	2	1	$0 \cdot 1$	1	2	$1 \cdot 4$	1	0.0	1	$0 \cdot 6$	1	$0 \cdot 6$	0	0.2	2	$1 \cdot 1$	0	0.0	0	1):4	1	$0 \cdot 6$
8				$0.0 \cdot 1$	02	20.7	1	21	$1 \cdot 2$	21	10	$0 \cdot 51$	10	0 0.0	0		0.61	12	20.3	2	1	$0 \cdot 4$	1	2	$0 \cdot 6$	1	0.3	1	$0 \cdot 6$	1	0.8	1	0.9	1	0.7	0	$0 \cdot 0$	0	0.2		
9				$1{ }_{1} 0 \cdot 1$	0	0 0.1	0	20	0.9	21	10	$0 \cdot 11$	i 0	0 0.0	1.	10	0.71	11	$10 \cdot 2$	1	1	0.3	-	2	0.5	2	0.7	2	0.7	l.	0.3	2	1.9	1	$0 \cdot 5$	0	$0 \cdot 1$	0	$0 \cdot 0$		
10				2 l	21	1.0	1	20	0.9	20	00	0.10	01	10.3	1	10	$0 \cdot 21$	12	$20 \cdot 4$	1	2	1.2	2	2	$0 \cdot 2$	2	1.0	1	$0 \cdot 2$	0	$0 \cdot 0$	2	$1 \cdot 1$	1	$0 \cdot 4$	0	0.2	0	0.5		
11				0.1	01	10.6	0	20	$0 \cdot 6$	10	00	$0 \cdot 0$	01	10.2	0	10	$0 \cdot 41$	12	$2 \mathrm{I} \cdot 2$	2	2	1.0	2	2	$0 \cdot 4$	1	$0 \cdot 1$. 0	$0 \cdot 1$	1	0.9	2	0.8	0	$0 \cdot 1$	1	$0 \cdot 1$	0	0.2		
12				0.2	12	$\begin{array}{lll}2 & 1.3\end{array}$	2	10	$0 \cdot 3$	10	00	$0 \cdot 0$	0	0 0.0	0	10	$0 \cdot 6$	21	10.8	i	1	0.0	i	1	$0 \cdot 1$	1	$0 \cdot 1$.	1.0	1	$0 \cdot 3$	1	1.3	0	$0 \cdot 1$	0	0.0	1	1.3		
13				2.0 .2	02	$2{ }^{2} 1 \cdot 4$	2	10	$0 \cdot 1$	0	00	$0 \cdot 10$	0	00.0	0		0.31	1.1	10.9	1	1	$0 \cdot 2$	1	2	0.8	1	0.3	2	1.0	0	$0 \cdot 3$	1	0.7	0	0.3	0	$0 \cdot 4$	1	$0 \cdot 9$		
. 14				0.8	12	2 1-6	2	10	$0 \cdot 2$	10	00	0.60	0	00.5	1	10	0.31	12	21.6	2	2	$1 \cdot 4$	-	1	0.4	2	$0 \cdot 6$	2	1.6	2	1.6	1	0.6	0	0.0	0	0.5	1	$0 \cdot 9$		
15				2 l 1.3	21	$1: 0.3$	1	10	$0 \cdot 1$	01	10	0.00	01	10.4	1		0.0	02	21.3	2	2	1.8	2	1	- $0 \cdot 1$	2	$0 \cdot 6$	2	1.2	2	1.2	1	0.9	0	0.5	1	0.7	i.	$0 \cdot 9$		
16				1.0	21	$1{ }^{1} 0 \cdot 1$	0	0	$0 \cdot 1$	- 1	10	0.51	11	10.4	1	10	0.01	12	$20 \cdot 9$	2	2	0.9	2	1	0.0	1	$0 \cdot 1$	1	$0 \cdot 9$	2	$1 \cdot 3$	1.	1.0	0	$0 \cdot 1$	1	$0 \cdot 4$	1	0.2		
17				1.0	21	10.2	1	0	$0 \cdot 3$	0	20	0.5	12	20.9	2	21	1.8	22	20.7	1	2	$0 \cdot 6$	2	1	0.0	1	$0 \cdot 5$	1	0.9	2	I-2	1	0.9		0.2	0	0.2	1	$0 \cdot 1$		
18				0.6	11	10.2	0	10	$0 \cdot 2$	01	10	$0 \cdot 21$	12	2 -1.0	2	21	$1-12$	21	10.0	i	2	$0 \cdot 4$	2	1	$0 \cdot 3$	2	$1 \cdot 3$	2.	$0 \cdot 5$	1	$0 \cdot 4$	0	$0 \cdot 1$	0	0.7	0	$0 \cdot 1$	1	$0 \cdot 1$		
19				$0 \cdot 6$	11	10.4	1	10	$0 \cdot 1$		0	$0 \cdot 10$	02	2. 0.9	2	20	$0 \cdot 41$	10	\% 0.0	0	2	0.2	-	1	$0 \cdot 1$	2	1.0	1	0.8	1	0.3	1	0.2	1	0.5	1	0.9	0	$\dot{0} \cdot 1$		
20				0.5	21	10.3	0	1	$0 \cdot 1$		10	0.71	I 1	10.2	1	20	0.51	12	$20 \cdot 7$	1	2	$0 \cdot 3$	-	1	0.0	2	0.8	1	$0 \cdot 4$	1	1	1	0.0	0	$0 \cdot 1$	1	$0 \cdot 2$	2	$1 \cdot 1$		
21				0.0	0	00.2	0	10	$0 \cdot 2$	01	10	0.4	1.	$2{ }^{2} 0.6$	1	10	$0 \cdot 11$	12	$20 \cdot 3$	1	1	0.0	-	1	0.0	2	$0 \cdot 3$	1	0.6	1	$0 \cdot 9$	0	$0 \cdot 0$	0	0.0	1	$0 \cdot 5$	1	0.8		
22	1	$0 \cdot 8$	21	$0 \cdot 1$	1.0	0 0.1	0	10	$0 \cdot 6$	11	10	$0 \cdot 1$	0	$\begin{array}{ll}\dot{2} & 1-1\end{array}$	2	20	0.71	10		1	1	0.8		2	$1 \cdot 2$	\sim	$0 \cdot 4$	1	$0 \cdot 4$	1	0.5	1	$0 \cdot 1$	0	$0 \cdot 0$	0	0.2	1	0.3		
:23	1	$0 \cdot 1$	-2	20.3	0	0 0.1	0	2.0	0.9	10	0	$0 \cdot 1$	12	20.9	2	20	0.9	I 1	10.3	1	2	$0 \cdot 6$	-	2	$1 \cdot 3$	-	0.2	1	$0 \cdot 1$	2	1.0	1	0.5	0	$0 \cdot 0$	1	0.6	1	0.2		
24	0	$0 \cdot 0$	11	$\begin{array}{lll}1 & 0.2\end{array}$	00	0 0.3	0	1.0	$0 \cdot 6$		00	$0 \cdot 0$	01	1 0:4	1	21	1-6	21	$10 \cdot 2$	1	2	0.0	-	2	$0 \cdot 9$	1	$0 \cdot 1$	0	$0 \cdot 0$	1	$0 \cdot 4$	0	$0 \cdot 3$	0	$0 \cdot 3$,	0.7	0	$0 \cdot \overline{5}$		
25				$1 \begin{array}{lll}1 & 0.3\end{array}$	0	$0 \cdot 0 \cdot 1$	0	1.	$0 \cdot 2$		10	$0 \cdot 3$	1 I	$1{ }^{1} 0 \cdot 3$	1	20	$0 \cdot 3$	11	$10 \cdot 3$		0	$0 \cdot 1$		2	$0 \cdot 5$	2	0.8	2	1-1	0	$0 \cdot 2$	0	$0 \cdot 1$	1	$0 \cdot 5$,	$0 \cdot 1$	1	$1 \cdot 1$		
26	2	$0 \cdot 6$	10	$0.0 \cdot 1$	01	$10 \cdot 1$	1	10	0.2	11	10	0.7	11	10.1	1	10	$0 \cdot 61$	10	00.0	1	2	0.8	-	2	0.2	2	0.2	?	$1 \cdot 1$	1	0.	0	$0 \cdot 1$	0	0.2	1	$0 \cdot 7$		0.5		
27	2	$0 \cdot 0$	10	0 0.2	10	0 0.2	0	2.	0.8	21	10	0.8	12	20.8	1	10	0.0	01	10.3	1	2	0.3				1	0.3	1	0.4.	1	0.2	1	$0 \cdot 9$	1	0.7	0	$0 \cdot 1$		-0.2		
28	11	0.7	10	0 0.1	00	0 0.0	i	20	$0 \cdot 9$	10	0	0.10	0	20.7	1.	$\bigcirc 0$	0.0	02	20.7	2	2	$0 \cdot 0$		1.	0.0	1	$0 \cdot 6$	0	0.0	1.	0.3	1	0.7	-	0.5	1	-0.9		$0 \cdot 1$		
29	$\dot{2}$	$1 \cdot 1$	10	$0 \cdot 0 \cdot 1$	01	$10: 8$	1	20	0.8	10	0	$0 \cdot 0$	0	10.4	1	0	$0 \cdot 2$	11	$1{ }^{1} 0 \cdot 1$	1	1	0.0		2	0.2	1	$0 \cdot 3$			1	$0 \cdot 8$	0	$0 \cdot 1$	- 1	0.5		1.0		$0 \cdot 2$		
30	1.	$0 \cdot 1$	11	1 0.3	0.1	10.6	1	10	0.3	11		0.3	11	$1 \begin{array}{ll}1 & 0.3\end{array}$	1	10	0.3	1			1	0.0		2	0.5	,	1.3			2		0	0.0	,					$0 \cdot 2$		
31	0	$0 \cdot 1$	0			110.8	1				21	$1 \cdot 1$	1	1.0 .3										-1	$0 \cdot 1$	2	0.7			2	0.9			0	$0 \cdot 2$				$0 \cdot 1$		

[^0]Table XIX.-Dates of Selected Disturbed and Quiet Days; and Cape Denisison Character Figures thereon.

Table XX:-International \& Cape Denison Character Figures. Mean Monthly Values.

Month.	$\substack{\text { International } \\ \text { Charactert Figures. }}$ Cape Denison Character Vigures. 1912.						$\xrightarrow{\sim}$					
	Disturbed	All	Quet	cinisturbed	All	Quiet		All ${ }_{\text {ald }}^{\text {Aly }}$	Quiet	Disturbed Days:	$\begin{gathered} \text { All } \\ \text { Dayd. } \end{gathered}$	Qulet Days.
January	\ldots	\ldots				\ldots	$1 \cdot 20$	$0 \cdot 51$	0:06	$2 \cdot 0$	1-55	1.0
February		\ldots		\cdots	\ldots	\ldots	1:20	0.53	0:02	$2 \cdot 0$	$1 \cdot 11$	$0 \cdot 2$
March .	\ldots	\ldots	\ldots		\ldots	\ldots	$1 \cdot 26$	0.53	0.06	$2 \cdot 0$	1.03	$0 \cdot 4$
April ...	$1 \cdot 12$	0.45	0.08	$2 \cdot 0$	$1 \cdot 3$	0.6	1.24	0.54	0.06	$1 \cdot 6$	0.83	$0 \cdot 4$
May ..	1-18	0.47	0.10	20	0.97	$0 \cdot 6$	$1 \cdot 18$	$0 \cdot 45$	$0 \cdot 02$	$1 \cdot 8$	$0 \cdot 63$	$0 \cdot 0$
Junc	0.98	$0 \cdot 47$	0.08	2.0	$1 \cdot 23$	$0 \cdot 8$	1:02	$0 \cdot 45$	0.04	$1 \cdot 2$	0.60	$0 \cdot 2$
July	1.06	$0 \cdot 41$	0.02	1.8	0.90	0.2	1.06	0:42	0.08	$1 \cdot 2$	0.55	$0 \cdot 2$
August	$1 \cdot 12$	0.49	0.02	2.0	1-16	$0 \cdot 2$:..	...	- ...
September	$1 \cdot 22$	0.47	0.02	$2 \cdot 0$	1-13	$0 \cdot 4$	\ldots	...	- ...	\cdots
October	1.20	0.46	0.02	1.8	1-23	$0 \cdot 6$...	\cdots	\cdots	\cdots	\cdots	\cdots
November :	$1 \cdot 06$	0.45	$0 \cdot 00$	1.8	1.50	$1: 0$		\therefore	\ldots	...	\cdots	...
December	$1 \cdot 18$	$0 \cdot 43$	000	$2 \cdot{ }^{\circ}$	$1 \cdot 60$	1.2		..			\because	
Means :	1.12	$0 \cdot 46$	0.04	1.93	$1 \cdot 22$	0:62	$1 \cdot 17$	$0 \cdot 49$	0.05	$1 \cdot 69$	0.90	0.34

Table XXI-Analysis of International and Cape Denison Character Figures.

International Character.	Cape Denison. 2's.				Cape Denison, 1's.				Cape Denison. 0 's.				Cape Denison. Mean Character.			
	A	w	E	s	A	w	F	S	A	W	f	S:	A	w	E	S
0.0 and 0.1	5	0	0	4	63	17	14	26	71	42	17	6	0.53	$0 \cdot 29$	$0 \cdot 45$	$0 \cdot 94$
0.2 and 0.3	;18	1	4	10	(66	32	20	. 9	28	22	5	0	0.91	0.62	0.97	1:53
0.4 and 0.5	14	1	3	7	39	22	9	8	12	10	2	0	$1 \cdot 03$	- 0.73	1.07	1-47
0.6 and 0.7 .	24.	6	5	10	32	16	10	5	4	3	. 1	0	$1 \cdot 33$	$1 \cdot 12$	-1-25	$1 \cdot 67$
0.8 and 0:9	31	17	6	7	28	11	10	5	0	0	0	0	1.53	$1 \cdot 61$	1.38	1.58
1.0 to 1.4	51	17	9	18	7	4	2	1	0	0	0	0	1.88	1.81	1.82	1.95
1.5 to. 1.9	8	1	5		0	0	0	0	0.	0	0	0	2.00	$2 \cdot 00$	2.00	$2 \cdot 00$

Table XXII.-Cape Evans \& International Character Figures (Mean Monthly Values) associated with Cape Denison Characters, 2, 1 and 0 :

	$\begin{aligned} & \text { Cape Evans } \\ & \text { Character Figures. } \end{aligned}$			International Charincter Figures.					
				1912.			.1913.		
Cape Denison Figure,	2	1	0	2	1	0	2	1	0
January	\ldots	\cdots	\ldots	\ldots	0.72 .	029	\ldots
February ...	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	1.03	$0 \cdot 43$. 0.02
March	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	1-16	0.41	$0 \cdot 15$
April \because	$1 \cdot 29$	$0 \cdot 27$	0.20	0.74	0.23	$0 \cdot 12$	$1 \cdot 17$	0.59	$0 \cdot 11$
May ... '... ...	1:57	$0 \cdot 75$	$0 \cdot 13$	1.06	0.39	$0 \cdot 14$	$1 \cdot 30$	0.50	$0 \cdot 19$
Junc :-. \quad.	$1 \cdot 64$	$0 \cdot 40$	0:33	0.87	$0 \cdot 23$	$0 \cdot 27$	1.00	$0 \cdot 64$	$0 \cdot 16$
July	$1 \cdot 25$	$0 \cdot 83$	- $0 \cdot 10$	0.82	$0 \cdot 38$. 0.12	$1 \cdot 10$	0-65	$0 \cdot 25$
August \quad :	1:55	0.93	$0 \cdot 33$	0.95	$0 \cdot 31$	0.08
September	1:30	0.93	$0 \cdot 50$	0.83	0.36	0.17	\ldots	\ldots	...
October	$1 \cdot 64$	1.06	0.75	0.83	$0 \cdot 30$.	$0 \cdot 10$	\ldots	\ldots	\cdots
November	0.66	$0 \cdot 27$	$0 \cdot 10$	\ldots	\ldots	...
December	\ldots	\ldots	0:65	$0 \cdot 09$...			
. Means	$1 \cdot 46$	-0.74	$0 \cdot 33$	0.82	$0 \cdot 28$	$0 \cdot 14$	1.07.	0.49	0.15

Table XXIII--Association of Magnetic Characters at Cape Denison and Cape Evans.

Table XXIV.-27-day Intervial. .Sums of Cape Denison Character Figures.

Nature of Primary Pulse.	Primary l'ulse.					Secondary l'ulse'.					
	n-2	n-1	n	$\mathrm{n}+1$	$\mathrm{n}+2$	$\mathrm{n}+25$	n+26	$\mathrm{n}+27$	n+28	$\mathrm{n}+29$	n+30
75 Disturbed and Associated Days	82	108	140	126	103	S0	93	111	101	86	86
75 Quiet and Associated Days \ldots	77	65	39	53	83	60.	68	69	76	77	81
Difference Pulse 5	43	101	73	20	11	25	42	25.	9	5

CHAPIER II.-SQUARES OF DAILY AND HOURLY RANGES AS DISTURBANCE CRITUERIA.

§6. As we have seen, the character figures arrived at from general inspection of the Cape Denison curves show differences between 1912 and 1913, and between summer and winter, of which there is no suggestion in the international chäracter figures. Further inquiry appears desirable. To arrive at a definite result, it is necessary to employ some criterion of disturbance independent of the personal element. Various such criteria have been suggested, of some of which I have had considerable experience. Perhaps the simplest criterion is the absolute daily range (i.e., the difference between the highest and lowest instantaneous values of the day) of one or more of the magnetic clements. ...If only one element is to be used, H seems to have superior claims at most stations, because in lower latitudes disturbance is more pronounced in H than in D or V. Another suggestion is to employ $H \Delta H$, where " ΔH is the absolute daily range' in H . 'At the ordinary station H as a multiplier of $\Delta \mathrm{H}$ may be treated as constant for many years at a time. Thus the addition of H as a factor has no significance when it is merely a question of comparing adjacent years at a single station:

As the magnetic latitude increases, the pre-eminence of H as the disturbed element diminishes, and in England disturbance in D or in. W. (West component of force) is of the same order as disturbance in H or in N. (North component). Unless in exceptional cases, disturbance in V remains small in England compared with disturbance in H , but as the dip (i.e., magnetic latitude) further increases, there is a rise in the relative importance of disturbance in V . Thus it is fairly obvious that:any criterion of disturbance, which can be fairly applied the whole world over, should take. account of the vertical as well as the horizontal components.

Of the criteria suggested, the one which theoretically regarded seems to have most to recommend it is Bidlingmaier's magnetic "activity," by which was meant practically the mean value for the day of $\alpha^{2}+\beta^{2}+\gamma^{2}$, where α, β, γ are the instantaneous. departures of three rectangular components of magnetic force from their normal values.

Difficulty arises unfortunately when it comes to assigning a normal value to a magnetic element. H, for example, in low and mean latitudes is usually lower after a magnetic storm thian before. It may be argued that the normal value of H is that prior to the storm, and that the depression should be considered part of the disturbance. It would often make an enormous difference to the mean value of $\alpha^{2}+\beta^{2}+\gamma^{2}$ for the day if this view were accepted. We might have a very large value for a day the traces of which showed no large oscillations. We do not know exactly what the dicpression means. It might result from temporary electric currents induced in the earth by the magnetic storm. It might mean a temporary modification of the earth's magnetism. If the depression is, as has been suggested, an after-effect (Nachwirkung) it is practically certain that it depends partly on the intensity of the preceding disturbance and partly on the condition of the earth when the disturbance was experienced. $\dot{A} \cdot d i s t u r b a n c e$ which has been preceded at short intervals by disturbances of like magnitude might well have a small after-effect, as compared with an equal disturbance preceded by a long quiet time. In our present state of ignorance the only practical course seems to be to accept the mean value for the day as the normal value. It is the only plan on which there seems any reasonable chance of securing such agreement as is required for any international scheme.

The use of Bidlingmaier's "activity" might become a practical proposition if a suitable mechanical integrator could be constructed at a moderate price, but if the measurements it implies are made individually with an ordinary scale it entails an amount of labour which no ordinary observatory could undertake. This conclusion has been arrived at independently by several investigators after actual trial, and several alternätives have been suggested which entail less labour.

The simplest of these is to employ the square of one or more of the absolute daily ranges. If Bidlingmaier's "activity " is of the right dimensions, then it. is the square not the first power of the range we ought to employ. The square of the range will certainly not vanish however quiet the day, no more will the first power: Whether we use the square or the first power of the daily range by itself, we obviously include something other than what is ordinarily meant by disturbance. We can only expect to get something which waxes and wanes with disturbance.

It is further obvious that the square (or the first power) of the daily range cannot be an exact, measure of any physical characteristic of the day, because two days of very different characteristics may have equal ranges. One day, for example, might show considerable disturbance during each of the 24 . hours; while another was very quiet during the first 23 hours. This explains another proposal, developed in particular by Dr. A: Crichton Mitchell, to employ the sum (or mean) of the squares of the 24 -hourly ranges. A criterion based' on the 24 -hourly ranges ought a priori to be from the theoretical point of view superior to a criterion based on the daily range. But - it entails of course much more labour, and the more the labour the smaller the hope
of secturing the co-operation of a large number of observatories. It is thus of practical importance to ascertain the extent of agreement between the two criterià: If they lead to large differences on may occasions; the case for the less onerous criterion is 'weakened. As compared with the ordinary station, Cape Denison was an extremely disturbed station, and it is obviously of special interest to have reesults from it.
§7. It has been explained that disturbance in V is usually very simall in low latitudes. Even in mean latitudes, such as the south of England, the V trace often appears quiet on days when the other magnetic elements show considerable disturbance, and it is only on rare occasions that the disturbance in V is comparable with that in D or.H. The allotment of magnetic characters, $0,1,2$, at an English observatory is seldom influenced by the V trace. A day the V trace of which is highly disturibed at the ordinary station would be certain to show so much disturbance in D and H that ạ ". 2 " would in any case be allotted to it. On the other hand, uniformly good behaviour is unfortunately not a universal characteristic of V magnetographs, a fact which discourages the use of V traces. In short, if only ordinary observatories are considéred, there is a good deal to be said for leaving \bar{V} out of account in any practical criterion of disturbance.

There are thus reasons, irrespective of any special local phenomenon, for obtaining a measure of distirbance at Cape Dènison based on the horizontal components only, as well as one based like Bidlingmaier's "activity." on three components. But' there is an additional reason for doing this, viz., the unexpectedly large difference betiveen the V ranges recorded at Cape Denison and Cape Evans. The range at Cape Denison is almost invariably much the larger. This may be a natural phenomenon. Changes regular and irregular in the vertical force may, for some as yet unknown reason, increase rapidly as we approach the magnetic pole; and; if this is the case, the phenomenon is obviously a fundamental one, the further investigation of which is of the utmost importance. Something perhaps may be learned from the records of the Amundsen expedition near the north magnetic pole when these are published. But it is conceivable that instrumental causes may be at least partly responsible. My first idea, I must confess, was that some error might have been made in the scale value determinations either at Cape Denison or at Cape Evans. If one multiplied the daily range at Cape Evans by 2, or divided that at Cape Denison by 2, the results would be more in accordance with one's a priori ideas. But the methods employed at the two stations, although different, appear both sound . The mèthód employed at Cape Denison was really that devised by J, A. Broun. The \dot{H} and \dot{V} scale values depend on deflections of the D magnet, as well as on deflections of the H and V magnets: The only exceptional feature was that owing to the difference in type and size of the D and V magnets, special allowance had to be made for the difference in the "distribution constants" in the deflections öf thesè magnets: As explained by Major E. N. Webb, this correction wà undesirably large in the case of the V magnet: 'Still it. was only 10 per cent. at the most; so that even if the correction had itself been 50 per cent: in error; it would have
gone but a small way to explaining the difference between the ranges at Cape Denison and Cape Evans. Any large mistake in the Cape Evians scale value seems equally: improbable. In this case, the curves were re-measured and the calculations were, repeated independently by myself. .

The above remarks will explain why use was made of two criteria for Cape Denison $(\Delta \mathrm{H})^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}$ and $(\Delta \mathrm{H})^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}+(\Delta \mathrm{V})^{2}$ where $\Delta \mathrm{H}, \Delta \mathrm{D}$, and $\Delta \mathrm{V}$: are the absolute ranges of H, D, and V in the (Greenwich) day. At Cape Evans, as already explained, two rectangular horizontal components, N^{1} and W^{1}, were recorded. The two criteria employed for it are $\left(\Delta \mathrm{N}^{1}\right)^{2}+\left(\Delta \mathrm{W}^{1}\right)^{2}$ and $\left(\Delta \mathrm{N}^{1}\right)^{2}+\left(\Delta \mathrm{W}^{1}\right)^{2}+(\Delta \mathrm{V})^{2}$. It appeared desirable to employ a third station of a more ordinary kind. As Kew suffered sensibly even in 1913 from artificial disturbance, use was made of Eskdalemuir, the data from which were available. The horizontal components recorded there being N . (to true north) and W. (to true west), the two criteria employed were $\Delta \mathrm{N}^{2}+\Delta \mathrm{W}^{2}$ and $\Delta \mathrm{N}^{2}+\Delta \mathrm{W}^{2}+\Delta \mathrm{V}^{2}$. The comparison of the three stations was limited to the months April to October, 1912, because registration at Cape Evans ceased in November, 1912.

A comparison of the daily range criteria with hourly range criteria also seemed expedient, but it was limited to June and September, 1912. It was also limited to two elements, H and V at Cape Denison, N^{\prime} and V at Cape Evans. There were two mirrors in the D magnetograph at Cape Denison, so that during disturbed times there were traces both at the top and the bottom of the sheet. The maximum 'might come on the one trace, the minimum on the other. Consequently the labour of finding hourly ranges would have been exceptionally great in this element, and even with a single trace the measurement of hourly ranges calls for labour one is apt to grudge, when not fully persuaded of its necessity.

The values of the absolute daily ranges of D, H, and V on Greenwich days are given in Scientific Reports, Series B, Vol. I, Tables XVIIa to XVIIIc, pp. 101: to 197. The calculations on which the tables given here are based were made before Tables XVIIa to XVIIIc had appeared in print. They employed ranges given in manuscript received from New Zealand, with corrections received from time to time. On receipt of the printed volume, the values which had been used for the ranges were compared with the values printed. In some cases the values which had been used were consistent with the printed values of the maximum and minimum, while the printed ranges were not. In such cases the printed value was assumed to suffer from a misprint. But in general the printed value was accepted, and any correction thus necessitated was made. Some difficulty was, however, experienced in the case of days when the record was incomplete. The treatment of these days varies in Tables XVHa to XVIIc. For example, the limits of registration in the D curve were exceeded on April 5, 6, and 10 , 1912. Ranges are assigned on the 5 th and 6 th, but not on the 10 th. When the limits of registration are exceeded, the range recorded is necessarily an underestimate. But the limits of registration are not usually exceeded unless the range is exceptionally
$\ddagger 2032$-C
large, and in such a case it may be better to employ an under-cstimate of the range than to omit thic day altogether. •This point is discussed in Vol. I, p. 264. As is explained there, $a+$ was attached in the tables of mean monthly values of the absolute ranges on p. 266 "to any value supposed to be sensibly too small." But the defect in the mean monthly values had to be sensible before it was expressly indicated, and the number of occasions when the plus sign was added may give an inadequate idea of the number of individual days when an under-estimate was known to have been made. An underestimate of 20° or $20 \gamma^{\circ}$ in the range of a particular day has but a trifling effect on the mean monthly value at Cape Denison, but when we are considering individual days it is a different matter. The fact that the range is an under-estimate is only sometimes indicated explicitly in Tables XVIIa to XVIIc.
§8. In general; when a range had been assigned in Tables XVIIa to XVIIc to a day of incomplete trace, it was accepted, but on a few occasions, when a large number of hours' trace had been lost, it was thought better to disregard the day: The results appear in Tables XXV to XXXIV. In Tables XXV to XXXI, relating to the period April to October, 1912, corresponding results are given for Cape Denison (C.D:), Cape Evans (C.E.)', and Eskdalemuir (E). To facilitate reference, the columns are distinguished by numerals as well as by headings. Take; for example, Table XXV relating to April, 1912. Column 1, not counting the date column, gives $(\Delta H)^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}$ for Cape Denison; col. $2\left(\Delta \mathrm{~N}^{1}\right)^{2}+^{\prime}\left(\Delta \mathrm{W}^{1}\right)^{2}$ for Cape Evans; and col. $3 \Delta \mathrm{~N}^{2}+\Delta \mathrm{W}^{2}$ for Eskdalemür. In like manner, cols. 4, 5, and 6 give respectively $(\Delta \mathrm{H})^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}+$ $(\Delta V)^{2}$ for Cape Denison, $\left(\Delta N^{1}\right)^{2}+\left(\Delta W^{1}\right)^{2}+(\Delta V)^{2}$ for Cape Evans and $\Delta N^{2}+$ $\Delta \mathrm{W}^{2}+\Delta \mathrm{V}^{2}$ for Eskdalemuir. These six columns deal with the squares of absolute daily ranges, and the unit in each case is $(10 \gamma)^{2}$. Columns 7 to 16 , on the other hand, are character ratios, the ratios borne by figures in columis 1 to $\dot{6}$ to their mean values' for the month. For comparison with these, column 17 gives the international character figure for the day (I).

Cols. 7 and 8, and again cols. 10 and 11, are intended to give comparative results for Cape Denison and Cape Evans. At Cape Denison there were data for only 22 days for the horizontal components, and for only 20 days for all thiree components. Cols. 7,8 and 9 devoted to the horizontal components make use of the 22 days, while cols. 10,11 and 12, which include all three components, make use of only 20 days. The 22 -day mean value of $(\Delta \mathrm{H})^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}$ at Cape Denison, $638(10 \gamma)^{2}$, is given in one of the lines at the foot of the table. On April 1 , the value of $(\Delta H)^{2}+(H \Delta D)^{2}$ was $130(10 \gamma)^{2}$. The ratio borne by this to the monthly mean, $130 / 638$, or $0 \cdot 2$, is the first entry in col. 7., The first entries in cols. 8 and 9 are similarly the values of $111 / 540$ and $42 / 86$, being the ratios borne by the April 1 values of $\left(\Delta \mathrm{N}^{1}\right)^{2}+\left(\Delta \mathrm{W}^{1}\right)^{2}$ at Cape Evans and of $\Delta N^{2}+\Delta W^{2}$ at Eskdalemur, to their mean values for the 22 days. Two of these 22 days, viz., the 1 st and 2nd, were days for which satisfactory V ranges were not available at Cape Denison. The mean values of $(\Delta H)^{2}+(H \Delta D)^{2}+(\Delta V)^{2}$ at

Cape Denison, of $\left(\Delta N^{1}\right)^{2}+\left(\Delta W^{1}\right)^{2}+(\Delta V)^{2}$ at Cape Evans, and of $\Delta N^{2}+\Delta W^{2}$ $+\cdots \Delta V^{2}$ at Eskdalemuir for the remaining 20 days, were respectively 1189,732 and 97 in terms of the unit $(10 \gamma)^{2}$. The entries in cols. 10,11 and 12 are the ratios borne to these monthly values by the daily values of the quantitics.- April 1 and 2 were considerably less disturbed than the average day of the month, ard to bring out this 'fact the mean value of $(\Delta H)^{2}+(H \Delta D)^{2}$ at Cape Denison for the 20 days, 686 , is givè in the same line with the means 1189, 732 and 97 just mentioned, but it is enclosed in brackets to show that it was not a quantity used in any of the calculations.

In view of the considerable number of days for which data were lacking at Cape Denison, it appeared well to give in cols. 13 to 16 results for Cape Evans and Eskdalemuir based on all 30 days of April. This also illustrates one important aspect of the method employed, viz., that the character ratio depends not merely on the value of the criterion for the day, but also on the mean value of the criterion for the available days of the month. Thus the character ratio for April 5 at Cape Evans kased on the horizontal ccmponents : appears as $2: 8 \mathrm{in}$ col. 8 , but as $3 \cdot 2 \mathrm{in}$ col. 13 . The criterion for the day is 1496 in either :case, but the mean value of the criterion for the 22 days was 540 , whereas for the whole 30 days it was only 465 . The idea is that the mean value of the criterion for the days used would be communicated to the central station, as well as the values of the character ratios for the individual days of the month. These mean absolute values would serve for intercomparison of different months or years, while the character ratios would serve for the intercomparison of the days of the month. It might, of course, be decided to utilise only those stations which had a complete record for the month. But the method would afford an alternative to this. If the missing days happened to be nearly average days of the month at the station, their loss would make little difference to the character ratios. For example, in Table XXV the 22 days serving primarily, for the intercomparison of Cape Denison and Cape Evans gave $86(10 \gamma)^{2}$ as the mean value of $\Delta N^{2}+\Delta W^{2}$ at Eskdalemuir, while the corresponding mean for the whole 30 days was $82(10 \gamma)^{2}$; a difference of only some 5 per cent. It will be seen that the two corresponding sets of character ratios in cols. 9 and 14 are in most cases identical, and in no case differ by more than $0 \cdot 2$. On the other hand, the differences between corresponding character ratios for Cape Evans in cols. 8 and 13 are very sensible when the ratio is large.
§9.. Before commenting on the general physical results, it will be convenient to explain peculiarities in the several tables.

In May, 1912, as in April, data were lacking only at Cape Denicon. Thus Table XXVI follows the same lines as Table XXV. In June, 1912, data were lacking at Cape Evans as well as at Cape Denison, and the days involved were different. Cols. 7 to 10 give comparative data for Cape Denison ard Cape Evans for the twenty-two days represented at both stations, while cols. 11 to 14 give comparative data for the twentyfive days common to Cape Denison and Eskdalemuir, Finally, cols. 15 ard 16 give data for Eskdalemuiur employing all thirty days,

In July, 1912, the position was similar to that in June, except that there were no V data for Eskdalemuir, and a similar procedure was followed. Columns 10 and 11 apply to 29 , but column 12 to thirty-one days. In August, 1912, data were lacking at Cape Evans for two days, one being a day of very large disturbance. Comparative data are given in cols. 7 to. 10 for Cape Denison and Cape Evans, for the twenty-nine days represented at Cape Evans. Data were also lacking for one day at Eskdalemuir, but it was a day the inclusion or omission of which must have been pretty well immaterial. Thus, the Cape Denison ratios in cols. 11 and 13 are based on all thirtyone days, though the Eskdalemuir ratios in cols. 12 and 14 are based on only thirty days.

In September, 1912, the only item missing was the vertical force range at Eskdälemuir on the 26th. It was again a case where the inclusion or omission of the day could make little difference; and only one set of ratios is given, being based in each case on all the days available.

In October, 1912, data were lacking at Cape Evans and Eskdalemuir, but not at Cape Denison. Columns 7 to 10 give Cape Denison and Cape Evans ratios for the twenty-nine days represented at Cape Evans, while cols. 11 to 14 give Cape Denison and Eskdalemuir ratios for the days represented at Eskdalemuir. Finally, cols. 15 and 16 give Cape Denison ratios based on all thirty-one days.

In the three following tables XXII to XXIV, there are data for Cape Denison only. The only point calling for remark is that in November; 1912, satisfactory V ranges were lacking for four days, so that the ratios derived from the horizontal components and from all three components are not strictly comparable. But, so far as can be judged from the horizontal components, the inclusion or omission of the four days could have little effect on the monthly mean and the character ratios.
\% $\$$ Tosimplify the situation, attention may be called at once to the fact that in the great majority of days the character ratios for Eskdalemuir from the horizontal components and from-all three components are identical: There are in all only eleven days in which the two character ratios differ by more than $0 \cdot 1$, and only four in which they differ by more than 0:3. On May 13, the two ratios in cols. 14 and 16 are 4:8 and $5 \cdot 6$, and on August 6 th in cols. 12 and 14 they are $6 \cdot 8$ and $7 \cdot 6$; these were the only two days during the whole seven months when the V range at Eskdalemuir exceeded 100γ. The' period was of course more than usually quiet. On the other hand, disturbance is larger at Eskdalemuir than at most European stations. But the inference certainly is that it would make little difference to character ratios at the average observatory, or to character figures calculated therefrom at a central station, whether the V range were included or' not. But, on the whole, the inclusion of V ranges at Eskdalemuir tends to increase character ratios on (the days of largest disturbance, with consequent slight decline in character ratios on quiet days. September 17th and October 14th are, however, rather notable exceptions to this rule.

The inclusion of V is of considerably greater importance at Cape Evans. But, even there during the whole seven months, there are only thirty-two days in which the character ratios from the horizontal components and those from all three components differ by more than $0 \cdot 1$, and only six days in which the difference exceeds $0 \cdot 5$. Relatively considered, one of the most important exceptions was October 21st, a comparatively quiet day of international character 0.3 . On that day the V range at Cape Evans was 125γ, while the ranges of the horizontal components were each only 80γ. Cape.Denison was, however, on that day somewhat highly disturbed in the horizontal as well as the vertical components, the range in H. being. 316γ. Of the more highly disturbed days when the difference between the two character ratios at Cape Evans was large, one of the most notable was April 16, when the character ratios in cols. 13 and 15 were 3.0 from the horizontal components, and 4.6 from the three components. The V range at Cape Evans, 356γ, was more than double the next highest range of the month, and it considerably exceeded the corresponding V. range at Cape Denison, a rare event.

The employment of the V ranges had at Cape Evans no definite tendency to influence the character ratio in different directions on disturbed and quiet days.' Thus, putting first in each case the ratio derived from the two horizontal components, we have 6.7 and 7.6 for May $5,5.2$ and 4.4 for May 12, 4.6 and 4.0 for July 4, and 6.4 and 7.5 for July 5 .

Even at' Cape Denison the retention of the vertical force range makes less difference to the character ratios than might have been anticipated. But there are 79 days in the fifteen months of Cape Denison records in which the difference between the two character ratios exceeds $0 \cdot 2$, and 26 days in which it exceeds 0.5 . The number of days in which the two ratios absolutely agree and the number in which they differ by more than $0 \cdot 1$ are approximately equal. It seems pretty much a matter of chance whether the two horizontal components or the three components supply the larger value for the character ratio. The most outstanding cases of difference seem to merit special consideration.

April 15 and 16, 1912.-There is a curious contrast between these two days and between the two stations, Cape Denison and Cape Evans. At Cape Denison the 3 -component ratio is the higher on the 15th, and the lower on the 16th; at Cape Evans it is exactly the other way about. On the 15 th the V range at Cape Denison was 490γ, as compared with 261γ in H and 304γ in D; but the corresponding V range at Cape Evans was only 153γ, as compared with ranges of 245γ and 317γ in the two horizontal components. On the 16th, on the other hand, the V range at ${ }^{\circ}$ Cape Denison was only 289γ, as compared with 275γ in H and 366γ in D , while at Cape Evans the V range was 356γ, as against 268γ and 258γ in the two horizontal components. Thus, at Cape Denison the V range was relatively high on the $15 t h$, and
low on the 16th, while at Cape Evans the exact opposite occurred. At Eskdalcmur the V range was decidedly higher on the 15 th than on the 16 th; but on both days it was less than half the N . range.

May 7th and 17th, 1912-On both these days the Cape Denison character ratios especially the 3 -component ones were large compared with the Cape Evans ratios. The V range on the 7 th at Cape Denison was one of the largest of the month and nearly double the range in H ; it was nearly four times the corresponding V range at Cape Evañs, which was little over half the range in N^{1}. The 17 th was a quiter day but présented analagous features, the excess of the 3 -component ratio being conspicuous. The V ranges at Eskdalemuir on both these days were below the average and small compared with the ranges of the horizontal components.

June 3, 1912, is an interesting example of the diametrically opposite phenomenon. The V range at Cape Denison was relatively small, being less than two-thirds of that in H , and the 3 -component ratio was less by 0.6 than the 2 -component ratio.

July 4 and 6, i912.-On the 4th the 3-component ratio at Cape Denison is 50 per cent. larger than the 2 -component ratio, although the V range was an underestimate, the limits of registration being exceeded. The V range actually recorded was fully double that in H, whereas the corresponding V range at Cape Evans was considerably less than half that in N^{1}. Thus, like May 7 and 17, it was a case of a special development of V disturbance in a limited area. The phenomena on July 6th appear to be the exact opposite of those on the 4 th. On the 6th the 2 -component ratio had the exceptionally high value $9 \cdot 4$, exceeding the 3 -component ratio by 50 per cent. But the limits of registration were exceeded in all the elements during a.brief violent storm near noon G.M.T., so the results for the day are somewhat uncertain.

August 6, 18 and 22, 1912.-Of the outstanding cases in August, 1912, the 6th was a case where the V range at Cape Denison was relatively small, being much less than the D range, while the 18 th and 22 nd were cases in which the V range was very large both absolutely and relatively. On the 18th the Y range at Cape Denison was more than 6 .times that at Cape Evans, while on the 22nd it was.nearly three times as great. So both days are examples of exceptional local development of V disturbance

September 17, and November 16, 1912, are ẹxamples of the opposite phenomenon, the 3 :component ratio at Cape Denison being on each occasion less than the 2 -component ratio by $0 \cdot 6$. On September 17 the V range was unusually small compared with the D range, while on November 16, the H range was exceptionally large.

Of the exceptional cases in 1913 when the 2 -component and 3 -component ratios at Cape Denison differed by 0.6 or more, March 14 and 16, April 9, May 6, and July 15 \therefore were occasions when V disturbance was exceptionally large as compared with that in
the horizontal components. On January 18, May 5, and July. 12, on the other hand, it was the disturbance in D that was relatively large; while on March 30 it was special disturbance in H that led to the 2 -component ratio being the larger.
§11. Before considering how the results from the three stations are inter-related on individual days, an idea of their general relationships is desirable. Table XXXV gives the ratios borne by the mean monthly values of $\left(\Delta \mathrm{N}^{1}\right)^{2}+\left(\Delta \mathrm{W}^{1}\right)^{2}$ at Cape Evans and $\Delta \mathrm{N}^{2}+\Delta \mathrm{W}^{2}$ at Eskdalemuir to the corresponding mean monthly . values of $\Delta \mathrm{H}^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}$ at Cape Denison, and also the ratios borne by the mean monthly values of $\left(\Delta N^{1}\right)^{2}+\left(\Delta W^{1}\right)^{2}+(\Delta V)^{2}$ at Cape Evans and $\Delta N^{2}+\Delta W^{2}+\Delta V^{2}$ at Eskdalemuir to the corresponding monthly values of $\Delta \mathrm{H}^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}+\Delta \mathrm{V}^{2}$ at Cape Denison. In each case the monthly means used were derived from the same days at the three stations. The results are confined to the seven months April to. October, 1912. There were in July no V data for Eskdalemuir.

The sum of the squares of the horizontal components at Cape Evans is in May slightly in excess of the sum at Cape Denison, but on the average of the seven months the former sum is only 81 per cent. of the latter. The sum of the squares of the three rectangular components is invariably much less at Cape Evans than at Cape Denison, the mean of the ratios being only 0.55 . On the average $\Delta \mathrm{N}^{2}+\Delta \mathrm{W}^{2}$ at Eskdalemuir is less than a fifth of $\Delta \mathrm{H}^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}$ at Cape Denison, while $\Delta \mathrm{N}^{2}+{ }^{\prime} \Delta \mathrm{W}^{2}+\Delta \mathrm{V}^{2}$ at Eskdalemiur is only about a ninth of $\Delta \mathrm{H}^{2}+(\mathrm{H} \Delta \mathrm{D})^{2}+(\Delta \mathrm{V})^{2}$ at Cápe Denison: Thus, the contribution to the magnetic activity of the whole world made by an Antarctic station is almost" of a different order from that made by the average station in temperate latitudes.
§12. In view of the large difference between the mean values of the daily measures of 'activity at the three stations it is clearly to the character ratios we must look when considering whether the disturbance on a particular day was exceptional at one of the. stations.

A phenomenon which is readily recognised is the tendency for character ratios on very quiet days to be smaller at the Antarctic stations than at Eskdalemuir, especially near Antarctic mid-winter. The most prominent examples of this phenomenon during April, 1912 (Table XXV), were perhaps the 21st, 28th, and 29th. It will be simplest to consider the absolute ranges on these days, which were as follows (unit I_{γ}) :-

Cape Evans:		Eskdalemuir.			
$\Delta \mathrm{N}^{1}$	$\Delta \mathrm{~W}^{1}$.$\Delta \mathrm{~V}$		$\Delta \mathrm{~N}$	$\Delta \mathrm{~W}$
66	60	47		$\Delta 0$	44
50	49	27	63	48	.21
36	46	22	.38	6822	

On the 21st the Eskdalemuir character ratios were double those at Cape Denison and three or more times those at Cape Evans, while on the 28th and 29th the Eskdalemuir character ratios were seven or eight times those at Cape Evans. It is true that the ranges of the components in the horizontal plane were on the whole larger at Eskdalemuir than at Cape Evans on the 28th and 29th, but the prime cause of the relative smalliness of the Antarctic character ratios is the large size of the disturbance ceriteria in the average day of the month. If we regard the average day as the normal, then quiet conditions reduce the range in the Antarctic to an extent that they never do at Eskdalemuir. Even on the quietest days the range of the horizontal components at Eskdalemuir does not become very small compared with the range of the average day. The natural consequence of this is that when the majority of the days of a month are quiet, while a minority are fairly disturbed, the Antarctic character ratios tend to be lower on the quiet days and higher on the disturbed days than at Eskdalemuir: But while this is the usual phenomenon, exceptions are not unconmon. Thus on April 5, a day of international character $1 \cdot 3$, the Eskdalemuir character ratios are decidedly the "largest. Their excess over the Cape Denison ratios is specially pronounced, but that may be partly due to loss of trace at Cape Denison. The excess was mainly due to the large range in W at Eskdalemuir.

On April 10, 16, and 17-days of international character 1.0-the differences between the chatacter ratios at the Antarctic stations and at Eskdalemuir are in the more usual direction. On the 16 th the V range at Cape Evans considerably exceeded that at Cape Denison-an unusual event-and was more than double the next highest range at Cape Evans during the whole month of April. This explains the outstanding 3 -component ratio $4 \cdot 6$ at Cape Evans in column 15.
… : May 2"affords an example of a large difference between Cape Denison and Cape Evans character ratios, the latter being double the former. This arose from a large W^{1} range at Cape Evans, 200γ as compared with 107γ in H and 104γ in D at Cape Denison. On May 7th, on the other hand, the Cape Denison character ratios are preeminent, especially in the case of the 3 components; the V range at Cape Denison was nearly four times that at Cape Evans. On May 9th, a quiet day of international character $0 \cdot 1$, there was a very decided difference between the two Antarctic stations. The Cape Evans ranges were only a trifle larger than those at Eskdalemuir, but the ranges of the horizontal components at Cape Denison were nearly double, and that of the vertical component nearly four times the corresponding ranges at Cape Evans. On May 12, 13 and 14 there was a considerable amount of disturbance everywhere, and the Eskdalemuir character ratios are in general the lowest. The character ratios are exceptionally large on the 13th at Cape Evans. On that occasion the ranges of the horizontal components at Cape Evans exceeded those at Cape Denison, and the Cape Denison V range was only a little the larger. On May 17, a quiet day of international character 0.2, the cháracter ratios at the three stations are fairly similar, with the exception of the

3-component ratio at Cape Denison, which is much larger than the others: On this occasion the V range at Cape Denison was 12 times that at Eskdalemuir, and more

- than 5 ,times that at Cape Evans.

May 18, 22, 23 and 27 are days with international character figures of from 0.0 to 0:2 on which the Eskdalemuir character ratios are large compared with the Antarctic ones. The V range was invariably largest at Cape Denison, and with one exception was larger at Cape Evans than at Eskdalemuir; but the horizontal components were of similar size at the three stations. They were absolutely larger at Eskdalemuir thatn at Cape Eyans on the 18 th and 23rd.

June 1 and 2 displayed markedly different characteristics at Cape Denison and Cape Evans. The 1 st was a day of international character 1.0 , the 2nd of character $0 \cdot 8$, and in harmony with this the horizontal component ranges on the lst were decidedly the greater at Eskdalemuir. At Cape Denison the two days differed in the direction suggested by the international character figures, but to a much greater extent than these character figures would suggest, the range in all three components on the lst, being more than double the corresponding range on the 2nd. At Cape Evans, on the other hand, two of the three components had larger ranges on the 2nd than on the lst. The difference between the two Antarctic stations was largely due to the special developmentat Cape Evans of a smart disturbance between 6 h. and 9 h. G.M.T. on the 2nd.

June 8 and 9 were days of considerable disturbance in which the Cape Denison and Cape Evans ratios are exceptionally large as compared with those at Eskdalemuir. The V ranges at Eskdalemuir were respectively only 41γ and 34γ, whereas the V ranges at Cape Denison on both days exceeded 500γ. At Cape Evans the disturbance in the horizontal components was very similar to that at Cape Denison on both days, but the disturbance in V was much less:

June $6,13,15,16,17,18,19,20$ and 21 were all days with international characters from $0 \cdot 0$ to $0 \cdot 3$, in which the ranges of the horizontal components at Eskdalemuir were very similar in size to those at Cape Denison and Cape Evans. The character ratios on these days are all much larger at Eskdalemuir than in the Antarctic. The V ranges on these nine days were invariably largest at Cape Denison and least at Eskdalemuir. But the ranges of the horizontal components were larger at Eskdalemur than at Cape Evans on the $17 \mathrm{th}, 18$ th, and 20 th .

The international character figures for June 21 and 22 were respectively 0.2 and 0;6, implying that the 22nd was in general much the more disturbed day: But this is not the conclusion to which we should have been led by the ranges or the character ratios at Eskdalemuir or the Antarctic stations: According to these criteria, disturbance in the horizontal components was only a trifle, if at all, greater on the 22nd than on the

21st. At Eskdalemuir the N. and W. ranges on the 22nd did not exceed those on the 15 th and 16 th; days of international character $0 \cdot 1$, while the V range on the 22 nd was, with one exception, the smallest of the month.

July 4 and 5 , as their international figures 1.3 and 1.2 indicate, 'were at most stations the two most disturbed days of the month. Eskdalemuir agrees with the majority of stations in making the 4th the more disturbed day of the two, but at. Cape Denison and Cape Evans the character ratios were larger on the 5th than on the 4th. At most stations, Eskdalemuir included; the 5th was much more disturbed than the 6th, the international character of which was only $0 \cdot 7$. While six of the stations co-operating with De Bilt awarded a " 2 " to the 5 th, and only one station awarded " 0 ," fourteen stations awarded " 0 " to the 6 th, and none awarded " 2 ." Cape Evans agrees with Eskdalemuir in making the 6th much less disturbed than the 4th or 5th, but Cape Denison gives it a much higher character ratio than either of these days. The large ratio at Cape Denison on the 6th arose mainly from a very large H range-in reality an underestimate, as the trace went off the sheet-which was principally due to a short period disturbance near 12h. G.M.T. This disturbance was presumably of an unusually local character. It will be noticed that at Eskdalemuir the 2-component ratio was the same on the 6th as on the 9 th, a day of international character 0.1 .

July $2,10,13,15,18,19,24$ and 28 were quiet days, with international characters $0.0,0.1$ or 0.2 , on which the ranges of the horizontal components at Cape Denison and Cape Evans were only of the same order as those at Eskdalemur, resulting in the character .ratios at Eskdalemuir being much the largest. On the 10th, 15th, and 24th the Eskdalemuir horizontal component ranges exceeded those at either Antarctic station, and on . the 13 th they were considerably the largest.

July 14 had 0.6 for its international character, but its horizontal component ranges were notably less at Cape Denison and Cape Evans than at Eskdalemuir. The Antarctic ranges on the 14th, it is true, were very decidedly larger than those of the 13th, a day of international character $0 \cdot 1$, but they were rather smaller than on the 15th, a day of international character $0 \cdot 0$. Thus the 14th would seem to have been a much quieter day in the Antarctic than elsewhere. It woild be interesting to know its character in the Arctic.

On July 20, the 2-component charcter ratio at Cape Evans was double that at Cape Denison. This was due to the large W^{1} range at Cape Evans. The V range at Cape Denison showed its usual excess over that at Cape Evans.

On August 1 and 2 there is a marked contrast between the phenomena at Cape Denison and Cape Evans. The international character figures were respectively 0.9 and $0 \cdot 3$, and at Eskdalemuir the excess of the character ratios for the 1st over those for the 2 nd is in harmony with these figures. But at Cape Evans' the character ratios on
the 1st are much larger than we should have expected, the 3 -component ratio there being fully thrice that at Cape Denison. On the 2nd, on the other hand, the 2 -component ratio at Cape Evans is less than a third of that at Cape Denison; and the ratios at the latter station are both much larger than we should have expected. Thus the incidence of disturbance throughout the Antarctic on the 1st and 2nd must have varied greatly with the locality.

As its international character figure shows; August 6 was, in general, much the most disturbed day of the month, and the character ratios for that day at Eskdalemuir are amongst the highest of the seven months. The Cape Denison character ratios are a good deal smaller, and it is noteworthy that the deficiency is greatest in the 3 -component ratio. The V range at Cape Denison on the 6th was much less than the V ranges on the 18th, 22 nd and 23 rd , days of international character figures $1 \cdot 0,1 \cdot 1$ and 0.9 respectively. The D range on the 6th at Cape Denison was somewhat the highest of the month, but the H range was' considerably less than that of the 23 rd.

August 17th, 18th and 19th afford a contrast. Their international character figures, $0.9,1.0$ and 0.9 respectively, indicate approximate equality, with the $18 t \mathrm{~h}$ slighitly the most disturbed day. This is quite in harmony with the character ratios at Esskdalemuir. At Cape Evans the character ratios of the 17th and 19th closely resembled one another, but were decidedly greater than those of the 18th, while at Cape Denison the character ratios on the 19th were much the least of the three, and little more than half those of the 17th. At Cape Denison the V range on the 18 th was the largest of the month; it was six times the corresponding range at Cape Evans.

Another contrast is afforded by August 22 and 23, days of international characters $1 \cdot 1$ and 0.9 respectively. The excess of disturbance on the 22 nd is borne out by the character ratios at Eskdalemuir and Cape Evans. But at Cape Denison the character ratios for the 23rd are much-the larger and are more than double the corresponding ratios at Cape Evans. The V range at Cape Denison was only slightly larger on the 23 rd than on the $22 n$ d, but the H range on the 23rd was much the.larger, being in fact the largest H range of the month.,

August does not present so many examples as May, June or July of quiet days with character ratios much smaller in the Antarctic than at Eskdalemuir. Still there are a few such examples, including the 4th, 8th, 12th and 13th, all days of international character 0.0 : The horizontal component ranges at Eskdalemuir wẹe greater than those of either Antarctic station on the 4th and 12th, and exceeded those at Cape Evans on the 13th as well. The V range on these four days' was invariably much the largest at Cape Denison, but the Eskdalemuir range came next on the 4th, 12th and 13th.

September 17 and 18 present a striking contrast between the phenomena in the Antarctic and elsewhere.. As the international character figures 1.8 and $1 ; 1$ indicate, the 17th was in general much the more disturbed day. At Eskdalemuir the character
ratios on thie 17th were thë second highest of the seven months ; those of the i8th were

 but the èxcèss wäs slight. At Cape Dènisoon the ranges of the horizontal cómponents
 than double that on the 17th. The comparatively low value of the V ranige of thë 17th was a notable feature at Eskdalemuir as well as in the Antarctic.

Partly in conséquence of the relatively large amplitudes at Eskalemuir on September 1 í? the charactër ratios for the reaily quiet daỳs of thie iononth mäke a coloser approach tó equality thian usual at thë three stations: Thére wère, howeverer, a few

 horizontal component át eithèr Antaráctic̣ station:

 of the daily ranges were considerably smaller for Octöbèr thañ for Sèptè̀mbêr. Oñ October 14th the character ratios are notably greater at Cape Evans than at Cape Denison. This arises from the làrge size of ΔW^{i}; it exceèded the range in any component at Cape Denison, and was nearly double the next largest W^{i} range of the montit, that of the 15th. The dominant element at Eskdalemuir on the 14 th was W, and at Cape Denison D-was considerably more disturbed than H. On the i5th the character ratios at the three stations did not differ múch; and on this occasion the horizontäl components as well as the vertical had their largestst ranges at.Cape Denison:

In vièw of the enhianceed difference betwèen the 14th and 15th at Eskdalemuir, it is curious that the excess of the international character figure on the itth was largèly due to the more southèr cooperating statiọs. IIf we take the fifteen stations north
of $50^{\circ} \mathrm{N}$ which reported tö Dee Bilt, twellve assigned a " 2 " to the 14 th and ten to the 15th; but twenty-six stations in all assigned a " 2 " to the 14 th and only thirteen to the 15 th.

The character ratios at Eskdalemiur. on October 20; 21, 27 and 28 are all much : alikë́; in spite of the fact that the intërnational character figure was only 0.3 on the 21 st and 27 th; as against 0.7 on the 20 th and 28 th: With only the Eskdalemuir ranges to guiidè us; wee should havë regarded the four days as almost equally quiet. According to the Cape Eüańs character ratios the 21st was much the quiëtest day of the four,

- buit at Cápe Dënisoni it was similar to the 20 th and 28 th; and much more disturbed than
 quieettieess of thê horizontal compönents; the V rainge exceeded thöse of the other thizee days., This was the exacat opposite of what occurred at Cape Benison; where the V rangè on the $2 i$ ist was slightly less than on the 27 th, and much less than on 27 th

 thié Antárctic" Thé tendèncy seems not rather the other way. Thios on the $29 t h$; 30th and 31st; with international charactèters of $0: 1$ or 0.2 , thè Eskdalemuiur chäracteter ratios are markedily the smallest. Absolutely considered the ranges on these days at Etiskdalemiuir are quite insignificant, as compared with those at the Antarctic stations.

 and the three rectangular coninonents at Cape Denison in columns i and 2 refér to the
 In April, July and Novembêr 1912, when Vánges were lacking for some days fôr which horizontal components existed, a second value is given in column 5 for the horizontal
 ratios in column 7 borne by the three rectangular compoiients to the horizontal componecits are dërived frờm common däyss. In thèe casè of Cápé Evans's, columns 8 and 9 , and
 Table XXXV for days common to thë stations compared. Thé days lacking at Cäpe Eväns nừmbërèd thireë in Jüne; one in July and two each in August and October. The June and July days lacking were amongst the quietest of the month; the August days were ánongst the most disturked, and the October days were fairly average. Thus the figures in Table XXXVI in columiis 8 and 9 should be a trifle high for June and July, and soméwhat low for Auguṣt: At Eskdalemuir öne rather quiet day was lacking in August. In October V range was lacking for four days, for three of which horizontal components were also lacking. But in this case, as in August, the effect on the mean monthly values was presumably trifling: Coluṃn 7 under I gives monthly mean iñtérạtional character figures.

Several interestiing conclusions follow from Table XXXVI.. If we compare Cape Denison results for corresponding months of 1912 and 1913, we see-that in every month the figure for 1913 is much the lower. The extreme case is June. The mean international character figures for June, 1912, and June, 1913, are practically identical, the latter being the larger by 0.01 ; but $\Sigma \mathrm{R}^{2}$ (the sums of the squares of the daily ranges) from horizontal components is fully thrice, and ΣR^{2} from three rectangular components is nearly four times as large for June, 1912, as for June, 1913. April and July show nearly as large a decline in 1913 as June, and while the difference between the two years in May is not so outstanding it is still decisive. The result suggested by the daily character figures in Table XX, that 1913 in the Antarctic was a considerably quieter year than 1912 , seems undoubtedly true, if the square of the daily range-or for the matter of that its first power-is a satisfactory criterion of disturbance.

The annual variation of ΣR^{2} at Cape Denison is obviously very large, but the lack of data for December, and the gradual decline of disturbance apparently in progress in 1912-13, necessarily obscure details. The maximum clearly occurs near midsummer, probably in December, if we may judge by the D daily ranges. The equinoctial months occupy an intermediate position between winter and summer, and are in no way outstanding as they are in mean latitudes.

The low values assigned to May, 1912, at Cape Denison are due in part to the fact that one of the two days lacking was about the most disturbed of the month. If it had been available, Cape Denison would probably have agreed with Cape Evans in making July the quietest month of 1912. Apart from May, Cape Denison and Cape Evans agree as to the order of the months as regards disturbance. July would seem to have been the quietest month at Eskdalemuir as well, but the annual variation there is naturally of quite a different character from that in the Antarctic.

The ratio borne by $\Sigma \mathrm{R}^{2}$ from the three rectangular components to $\Sigma \mathrm{R}^{2}$ from the horizontal components at Cape Denison in Table XXXVI, col. 6, is on the average 1.7. It is sensibly above the mean in June and July, 1912, and in March, 1913, but this may be accidental. The fact that it had the same value for July, 1913, as for November, 1912, suggests that it is not sensitive to disturbance.
§14. Table XXXVII supplies an analysis of the values of $\Sigma \mathrm{R}^{2}$ at Cape Denison according to the values of the international character figure. The results in each case appear under five headings ": A refers to the three summer months, November, 1912, January and February, 1913; B to the equinoctial months, April, September and October of 1912; B^{1} to the equinoctial months, March and April of 1913; C to the winter months, May, June, July and August of 1912; and finally C ${ }^{1}$ to the winter months, May, June and July of 1913. If international character figures had the same meaning (for the Antarctic) in 1912 and 1913, we should expect a close similarity between the entries under B ard B^{1}, and between the entries under C and C^{1}. In view
of the small number of occurrences of the ligher international character figures-groups were formed. But results are given for the four lowest character figures $0.0,0 \cdot 1,0.2$ and 0.3 separately, as well as for the two groups composed of days of characters 0.0 and 0.1 , and days of characters 0.2 and 0.3 . It will be seen that in every single case, whether for the horizontal components or the three rectangular components, the entry under B largely exceeds that under B^{1}, and the entry under C largely exceeds that under C^{1}. The concensus in favour of the view that, so far as the Antarctic is concerned, a given international character figure implied much less disturbance in 1913 than in 1912-seems overwhelming.

The number of days was rather small in some of the groups especially that with character figures exceeding $1 \cdot 4$. Thus irregularities were to be expected. But the rise of ΣR^{2} with increasing international character figure is on the whole regular, especially in cols. B and C which included the largest number of days. If we took a mean from cols. B and B^{1}, and a mean from cols. C and C^{1}, we should largely eliminate the effect of any progressive decline in Antarctic disturbance, and obtain results fairly comparable with those in col. A. The result would be to show how widely different are the activities which answer to the same international character figure at different seasons of the year in the Antarctic.
§15. Table XXXVIII compares character figures at different seasons with the character ratios derived from the squares of the daily ranges at Cape Denison given in Tables XXV to XXXIV. The days were grouped according to the international character figure exactly as in Table XXXVII, and $\mathrm{A}, \mathrm{B}, \mathrm{B}^{1}, \mathrm{C}$, and C^{1} denote the same combinations of months as in that :table. The 2 -component ratios and the 3 -component ratios are treated separately.

In the four earliest classes with international characters 0.0 to 0.3 , the entries in col. A. are on the whole the largest, and those in cols. C and C^{1} the smallest. Thus the relation between the international character figures and the Cape Denison ratios is not wholly independent of the season of the year. But in the case of the higher international character figures, the entries in the several columns differ in rather a haphazard way, and the same is true of the difference between cols. B and B^{1} and the differences between cols. C and C^{1}. This supports. the view that in the Antarctic the international character figures have mainly a relative value like the character ratios.
§16. Tables XXXIX and XL supply.some data bearing on the question whether disturbance in vertical force is more or less local in its incidence than disturbance in the horizontal components. Table XXXIX employs the sum of the squares of the two horizontal components considering the cases in which the sum is above or below its mean value for the month. Take, for example, the month of May, and the two stations Cape Denison and Cape Evans. There were 29 days when ΣR^{2} was known at both stations. On 4 of these, ΣR^{2}. was above its mean value at both stations, on ' 3 it $\cdots \cdots$ above its mean at Cape Denison, but below it at Cape Evans, on 1 it was below
its mean at Cape Denison, butt above it at Cape Divans, and funally on 21 days it was below its mean ant both stations. This gave 25 agreements aṣ against 4 disagreements.

Taking the whole seven months, April to October, 1912, there were between Cappe Denison and Cape Evans 166 agreements out of a total of 189 days, or 88 per cent. Similarly between Cape Denison and Eskdalemuir there were 158 agreements out of 193 occasions, or 82 per cent, and between Cape Eyans and Espdalemuir 176 agreements out of 203 occasions, or 87 per cent. The agreement between Cape Denison and Cape Evans was decidedly less good in September and October than in the earlier months. The fact that the agreement between Cape Evans and Eskdalemuir is very nearly as good as between Cape Denison and Cape Eyans is rather surprising.

Table XL employs the vertical force range in an exactuty analogous way to that followed in the previous table. Taking the whole seven monthon, there were 70 days on which the vertical force range at Cape Denison was above its mean value for the month. On 53 of these days it was also above iṭs mean value at Cape Cyans, but on the remaining 23 days itt was below. Again, of the 127 days when the V range at Cape Denison was below its mean value for the month, there were 112 on which int was also below its mean value at Cape Evans. Thus on the whole there were between Cape Denison and Cape Evans 165 agreements out of a totall of 203 ocoasions, or 81 per cent. Similarly between Cape Denison and Eskdalemuir there were 127 agreements out of 1776 occasions, or 72 per cent., and between Cappe Evans and Esskdalemuir 130 agreements out of 173 occasions, or 75 per cent. In the case of Cape Denison and Cape Evạnṣ the agreement was decidedly better in the wwinter months, May to August, than in the more disturbed equinoctial months. In this case the agreement between Cape ${ }^{\text {Evans and Eskdalemuir, while rather better than that between Cape Denison }}$ " and Eskidalemuir, is markedly inferior to that between Cape Denison and Cape Evans. It will be observed that in both Tables XXXIX and XI, if we consider separately the days which were above and the days which were below the mean at one of the stations, a larger percentage of the latter fell iṇ the same category at the other station than of the former. Also the number of days below the mean was greater for Table XL than for Table XXXIX, as was to be expected seeing that the quantity - used was in the one case the square and in the other case the first power of ranges. Thus some excess in agreements might be expected in Table XXXIX as compared with Table XXIII, even if vertical force disturbance were no more local than disturbance in the horizontal components. But the excess of agreements in Table XXXIX cannot be fully accounted for in this way and the natural inference appears to be that disturbance is sensibly more local in its incidence in the case of the vertical force than in the case of the horizontal components. It will be understood that the nonagreements in both Tables XXXIX and XL represent, in the main, occasions when disturbance was moderate at both the stations compared. Days highly disturbed

- قatt any one station were in general highly disturbed att all, and days conspicuously guiet at any one station were nearly always conspicuously quiet at the other two.
\$17. As already mentioned, hourly ranges were measured at Cape Denison and Cape Evans for two months June and September, 1912 , measurements being confined to H and V at Cape Denison, and to N^{1} and V at Cape Evans. Tables XLI aṇd XLII compare the squares of the daily ranges and the sums of the squares of the hourly ranges for each element separately. Throughout the unit is (10y)2 The ratio borne by the sum of the squares of the hourly ranges to the square of the daily range is given for each day for each element. The ratios at the foot of the table are calculated from the monthly means of the two criteria, and do not represent the arithmetic means of the ratios for the individual days of the month. The fluctuations in the ratio from day to day must be ascribed in greater part to variations in the incidence of disturbance throughout the day. Occurrences of a purely fortuitous character may be expected to exercise a comparatively trifling influence on the ratios at the foot of the table, but it by no means follows that these ratios should be approximately the same for all months of the year. In a quiet month the ratio would naturally depend on the type of the regular diumal variation, and that is often considerably different in different seasons of the year. In the present case, however, the differences between the final ratios for the two months are very small at both stations. Thus at Cape Denison in the case of H we have 1.61 in June and 1.60 in September, while in the case of V we have 1.24 . in June and $1: 34$ ing September. At Cape Evans in the case of N ${ }^{1}$ we have $1 \cdot 13$ in June and 1.18 in September, while we have 111 in the case of V in both months:

The principal use of the absolute value of the criterion of disturbance, whatever that criterion might be, would naturally be as a measure of disturbance for the nionth. So far as two months at two stations enable us to jüdge, if the sum of the squares of the hourly ranges is a satisfactory criterion for this purpose, so too is the square of the daily range.

In judging of the relative disturbance of individual days within a month, we should naturally. be guided by the results from all the elements at a number of stations. We know a priori that the square of the daily range of one element at one station cannot be an exact measure of the disturbance at that station, and if an exact measure is wanted for any purpose, a minute study of details within the day cannot be avoided. Still the extent to which the daily ratios vary in Tables XLI and XLII is of interest. Before considering actual details, a glance at possibilities is desirable.: The extreme possibility on the one hand is that the maximum and minimum values should each be the same for each hour of the 24. In this event the sum of the squares of the hourly ranges would be 24 times the square of the daily range. At the other extreme is the case where the element rises, or falls, at a uniform rate throughout the whole 24 hours, Each hourly range is then $1 / 24$ of the daily range, and the sum of the squares of the hourly ranges would then be only $1 / 24$ of the square of the daily range. Thus the limiting values possible to the ratios in Tables XLI and XLII are respectively 24 and 1/24.
\ddagger 2032-E

While the daily ratios show a considerable variation in the course of the two months, it is nothing like what is theoretically possible. At Cape Denison the highest and the lowest of the actual values are 3.8 and 0.6 for H , and 3.4 and 0.6 for V ; while at Cape Evans they are 3.5 and 0.5 for N^{1}, and 3.2 and 0.5 for V. Out of sixty days at.Cape Denison the number which gave values for the ratio which departed by more than 0.5 from the final monthly mean was 25 in the case of H and 14 in the case of V; while out of 57 days at Cape Evans the number was 16 for N^{1} and 14 for V. In the case more especially of the horizontal components the great majority of the days which gave values for the ratio which differed by more than 0.5 from the mean were days of small range which made but a slight contribution to the value of $\Sigma \mathrm{R}^{2}$ for the month.

Tables XLIII and XLIV compare the results from the squares of the daily and hourly ranges in a different way. The columns are again numbered for convenience of reference. The figures are really character ratios. Thus in Table XLIII, col. 1 gives the ratio borne by the square of the daily range of H at Cape Denison to the mean value for June, 228 ($10 \gamma)^{2}$. Similarly col. 2 gives the ratio borne by the sum of the squares of the hourly ranges of H at Cape Denison to their monthly mean, 367 ($10 \gamma)^{2} . \therefore$ Cols. 3 and 4 deal in similar fashion with the daily and hourly ranges of V at Cape Denison. Col: 5 gives the arithmetic mean of the entries in cols. 1 and 3 , while col. 6 gives the arithmetic mean of the entries in cols. 1 and 3 , while col. 6 gives the arithmetic mean of the entries in cols. 2 and 4 . Thus cols. 5 and 6 give the character ratio for the day based on the two components H and V at Cape Denison, the criterion being the square of the daily range in col. 5, and the sum of the squares of the hourly ranges in col. 6. Cols. 7 to 12 deal in exactly similar fashion with the N^{1} and V daily and hourly ranges at Cape Evans. Col. 13 gives the mean "of the character ratios from the daily ranges in cols. 5 and 11, while col. 14 gives the mean of the character ratios from the hourly ranges in cols. 6 and 12. In the event of an international scheme being developed on these lines, instead of means from two stations only, as in cols. 13 and 14, we should have means from thirty or forty stations.

The illustration of the method in Table XLIII suffers a little from the lack of data for three days at Cape Evans. Alll three happened to be very quiet days. If we had omitted these days at Cape Denison also, we should have obtained somewhat higher mean values than we actually did for all the mean monthly criteria, and consequently slightly lower character ratios for the twenty-seven days common to both stations.. This explains why the sums of the character ratios in cols. 13 and 14 are respectively. $28 \cdot 2$ and $28 \cdot 1$ instead of (approximately) $27 \cdot 0$.

This defect should not introduce a difference between cols. 13 and 14 , so we may compare them without any reservation. It will be seen that out of the twenty-seven entries in the two columns 14 are identical, including every case except two where the character ratios do not exceed $0: 5$. There are only nine cases in which the entries differ by more than $0 \cdot \mathrm{i}$; and in seven of these the international character figure is $0: 8$ or higher.

To see exactly how far the two criteria agree between themselves as to the choice of quiet and disturbed days for the month, and how far they agree ;with the choice which had. been made at De Bilt, it is necessary to employ the character ratios actually got out, which went to one place of decimals beyond that retained in Table XLHII,

The De Bilt-quiet days were the 5th, 6th, 15th; 19th and 20th. . Unfortunately the 6 th and 15 th are days for which data were missing at Cape Evans. The daily and hourly range criteria agree in putting the 19 th and 20 th amongst the five quietest days, but neither would include the 5 th, while both make it quieter than the average day.

The De Bilt choice of disturbed days included the 1st, 8th, 9 th, 10 th and 28 th. The daily range criterion would give the 1 st, 2 nd, 8 th, 9 th and 27 th; while the hourly. range criterion would give the 1st, 8th, 9th, 10th and 29th.

All the choices include the 1st, 8th and 9th, the international characters of whicli were respectively $1 \cdot 0,1 \cdot 2$ and $0 \cdot 9$: Of the other days mentioned, the 10 th and 28 th had the international figure 0.9 , while the $2 \mathrm{nd}, 27$ th and 29 th had the international figure 0.8 . There is thus, in reality, a close agreement in the results. The chief departure from the international choice is as regards the 28th. The daily range and hourly range criteria both place it only l0th on the list, when the days are arranged in order of disturbance.

Table XLIV for September follows exactly the same lines as the previous table. In this case fortunately the month was complete at both stations. The agreement between the entries in columns 13 and 14 is not quite as close as in June, the difference exceeding 0.1 in fourteen out of the thirty days. There is, however, not at all a bad agreement as to the order in which the days come as regards disturbance. The international quiet days in September were the 2nd, 15th, 16 th, 27 th and 28 th. This is the exact choice given by the hourly range criterion. The daily range criterion agrees as to the 2nd, 15th and 28th, but places next to these the 3rd and 7th, the 27 th coming next.

The international disturbed days for September were the 4th, 17th, 18th, 23rd, and 24 th. The daily range criterion suggests the 4 th, 17 th, 18 th, 22 nd and 24 th, while the hourly range criterion suggests the 17th, 18th, 22 nd, 23 rd , and 24 th . There is thus agreement as to the 17th, 18th, and 24th, the international characters of which were respectively $1 \cdot 8,1 \cdot 1$ and $1 \cdot 6$. Of the other days mentioned the 4 th and 22 nd had international character $0 \cdot 7$, and the 23 rd , character $0 \cdot 9$. There is thus again little real difference in the results.

Summarising the results for the two months, we may say that both daily and the hourly range criteria agreed that the international quiet days were amongst the quietest days of the month, and that all the international disturbed days were amongst the most disturbed. The days suggested as international quiet dayp for the two months by one
or other critèrion numbered in all twèlve: Of thëse eight had international characters 0.0 or $0 \cdot 1$; the other four days laving characters $0: 2,0: 3$ and 0.6 (two). Thè last two days Jüne 7 and Septemberr 3, are thius a little outstanding. June 7 was the quietest day of the month according to the hourly range criterion; and there were only two quieter days according to the daily range criterion. It was conspicuously quiet at both Cape Denisón and Cape Evans.

According to the hourly range criterion, there were eight days quieter than September 3 rd ; and according to the daily range there were three quieter. Thus it is a less outstanding case. The day, moreover, was less conspicuously quiet at Cape Ḋènisonn thän at Cape Evans, still it was a distiñetly quiet day. W̌e must allow that añ óccoasionäl day may be a good deal queter in the Antarctic than the internationäl character figure would suggest. It would be interesting to know what the magnetic conditions were in the Arctic on June 7th and September 3rd:

Tabied. XXV:-April, 1912: Squaares of Daily Ränges (Unit $100 \gamma^{2}$) and Ratiös.

	2 Cömp̄onèntà.			s Coömponentis.			Days conmmon to 3 stations.						Days comion to C.E. and E.							
				2 Components. ${ }^{\text {a }}$	3 Comiponents.			2 Components.		3 Components.										
	C.D.	c.Ė:	E.				c. D .	c.e.	E.	c.D.	c.es.	E.	C.D.	c.e.	E.	c.e.	E.	c.E.	E.	I.
cóoüminn...	i	2	3	4	5	6	7.	8	0	10	11	12	13	14	15	10	17			
Dāte.																				
1	130	$1 i 1$	$4 \dot{2}$...	1135	44	0.2	0. 2	0.5	\ldots	:.	..:	0.2	(i.5	$0 \cdot 2$	0.5	$0 \cdot 1$			
2	1934	106	$5 \dot{8}$	\therefore	141	${ }_{6} 2$	0:3	0.2	0.7	\cdots	!..	\cdots	0.2	. 0.7	0.2	0.7	0.3			
3	$\dot{4} \dot{6} 3$	365	58	1;108	430	66	0.7	0.7	0.7	0.9	$0 \cdot 6$	0.7	0.8	0.7	$0 \cdot 7$	0.7	0.4			
4	342	191	40	699	228	45	0. 5	0.4	0.5	0.6	0.3	0.5	$0 \cdot 4$	0.5	0.4	0.5	$0 \cdot 3$			
5	1;307	1,496	316	1,719	1,635	334	2.0	2.8	3.7	1-4	$2 \cdot 2$	3.4	$3 \cdot 2$	3.9	$2 \cdot 8$	3.7	$1 \cdot 3$			
6	:	1;096	258	...	i,152	313	$2 \cdot 4$	3.1	2.0	$3 \cdot 5$	1.0			
7	929	785	140	1;243	902	148	1.5	1. 5	i. 6	i. 0	1.2	1.5	i'7.	17	1.6	1.6	0.8			
8	10ı 1	$\stackrel{7}{7}$	$4 \overline{5}$	197	112	46	0.2	0.1	$0 \cdot 5$	0.2	0:2	0.5	0.2	0.5	$0 \cdot 2$	0.5 .	$0 \cdot 1$			
9	292	167	56	563	208	59	0.5	0.3	0.7	0.5	0.3	$0 \cdot 6$	0.4	0.7	0.4	0.7	$0 \cdot 1$			
10	1,326	1,088	: ìio	ï;888	1;364	115	2.1	2.0	113	İ6	1.9	$1 \cdot 2$	$2 \cdot 3$	1.3	$2 \cdot 4$	1.3	1.0			
11	118	148	24	206	173	26	0.2	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 2$	0.2	0.3	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	0.3	0.1			
12	260	168	41	660	193	45	0.4	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 3$	0.5	$0 \cdot 4$	$0 \cdot 5$	0.3	0.5	0.2			
13	405	225	30	829	282	32	$0 \cdot \hat{6}$	0.4.	0.3	0.7	0.4	0.3	$0 \cdot 5$	0.4	0.5	0.4	0.2			
14.	$26 \ddot{4}$	211	84	$\dot{4} 6$	$256{ }^{\text {a }}$	90	0.4	0.4	i. 0	0.4	$\ddot{0} 3$	$\ddot{0} 9$	0.5	i. 0	0.4	1.0	0.8			
$1{ }^{\text {İ }}$	19605	1,605	202	4;006	i, 839	228	$2 \cdot 5$	$\stackrel{3}{0} 0$	2.3	3.4	25	23	$3 \cdot 5$.	2.5	$3 \cdot 2$	2.5	13			
16	2,096	1,384	15	2\%931	2,651	163	3.3	2.6	$1 \% 8$	2.5	3.6	1.7	$3 \cdot 0$	1.9	4.6	1.8	1.0			
17	974	i;3ī̄̆	105	2;495	1,546	iil	1. 5	2.4	1:2	¢. 1	$\underline{2} \cdot 1$	1.1	2.8	1.3	2.7	1.2	1.0			
18	1;13̈	826	85	i;520	1,0̈45̆	92.	1. 8	1.5	1.0	i. 3	1:4	0.9	1. 8	1.0	1. 8	1.0	$0 \cdot 6$			
19	615	$4{ }^{4} 7$	77	766	530	80	i. 0	$\ddot{0} 9.9$	$0 \cdot 9$	$\stackrel{0}{0} \cdot \underline{6}$	0:7	0.8	1.0	\%\% 9	$\ddot{0} \cdot \underline{9}$	$0 \cdot 9$	0.6			
20	771	728	68	i,468	781	76	1.2.	1.3	0.8	1.2	i:1	0.8	$1 \cdot 6$	0.8'	1.4	0.8	0.5			
2 z	1774	80	$5 \dot{5}$	304	102	58.	0.3	$0 \cdot 1$	0.6	$0 \cdot 3$	0.1	$0 \cdot 6$	$\ddot{0} 2$	0.7	0.2	$0 \cdot 6$	$0 \cdot 0$			
22	\therefore	232	52		319	56	\ldots		:			\cdots	0.5	0.6	0.6	$0 \cdot 6$	0.1			
23	286	222	52	378	242	59	0.4	0.4	0.6	0.3	0.3	$0 \cdot 6$	0.5	0.6	0.4	0.7	0.3			
24	:..	281	29	...	338	${ }_{3} 1$:	-	0.6	0.4	0.6	0.3	$0 \cdot 2$			
25	\ldots	222	42	\cdots	261	45	\cdots	\cdots	\ldots	\therefore	...		0.5	0.5	0.5	0.5	0.3			
26	\ldots	64	28	...	82	31	\ldots	\cdots	\cdots	\ldots	0.1	0.3	$0 \cdot 1$	0.3	0.1			
27	\cdots	90	43	:..	131	48:	\cdots	...	0.2 .	0.5	$0 \cdot 2$	0.5	0.2			
28	...	49	63	..	56	67	...	\ldots	...	\cdots	\ldots	...	0.1	0.8	0.1	0.7	0.1			
29		34	61		39	66	'...	\ldots	\ldots		0.1	0.7	0.1	0.7	0.1			
30	251	112	57	332	123	60	0.4	0.2	0.7	0.3	0.2.	0.6	0.2	0.7	0.2	0.7	0.3			
Means -																				
22 days.	638	540	86	\ldots	\cdots	\ldots														
20 days.	(686)	...	\cdots	1,189	732	97														
All days available.	(638)	465	82	$(1,189)$	577	90														

Table XXVI.-May, 1912. Squares of Daily Ranges (Unit $100 y^{2}$) and-Ratios.

	- 2 Components.			3 Components.			Days common to 3 stations.						Days common to C.E. and E.				I.
	- $\mathrm{C} . \mathrm{D}$.	c.e.	E.	c.d.	c.e.	E.	c.D.	c.e.	E.	C.D.	C.E.	E.	C.E.	E.	c.e.	E.	
Column	1	2	3	4	5	6	7	8	${ }^{9}$	${ }^{10}$	11	.12	13	. 14	- 15.	16	17
1	89	107	45	134	122	52	0.3	$0 \cdot 3$	0.6	- 0.2	$0 \cdot 3$	$0 \cdot 6$	0.3	0.5	$0 \cdot 2$	0.5	$0 \cdot 1$
2	223	471	61	293	521	68	0.7	1.4	0.8	0.5	1.2	0.8	$1 \cdot 1$	0.7	1.0	0.7	0.5
3	382	325	84	463	373	88	1.2	1.0	$1 \cdot 1$	0.8	$0 \cdot 9$	$1 \cdot 0$	0.8	1.0	0.7	0.9	$0 \cdot 6$
4	311	250	57	462	286	60	$0 \cdot 9$	0.7	0.7	$0 \cdot 8$	0.7	. 0.7	$0 \cdot 6$	0.7	$0 \cdot 5$	$0 \cdot 6$	0.5
5	...	2,812	321	\ldots	4,066	334	\ldots	\ldots	\ldots	6.7	3.7	7.6	3.5	1.3
6	\cdots	412	75	\cdots	531	84	\ldots	\cdots	...	\ldots	\ldots	\ldots	1.0	0.9	1.0	0.9	0.9
7	810	464	156	1,879	538	160	$2 \cdot 5$	1.4	$2 \cdot 0$	$3 \cdot 2$	1.3	1.8	$1 \cdot 1$	1.8	1.0	1.7	0.8
8	459	337	52	1,016	439	58	1.4	1.0	0.7	1.7	1-1	. 0.7	$0 \cdot 8$	0.6	0.8	0.6	0.7
9	157	45	32	281	54	34	0.5	$0 \cdot 1$	0.4	0.5	$0 \cdot 1$	$0 \cdot 4$	$0 \cdot \mathrm{I}$	0.4	$0 \cdot 1$	$0 \cdot 4$	0.1
10	132	210	35	24.4	236	38	$0 \cdot 4$	$0 \cdot 6$. 0.4	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 4$	0.5	$0 \cdot 4$	$0 \cdot 4$	0.4	$0 \cdot 2$
11	133	110	67	210	127	74	0:4	0.3	$0 \cdot 8$	$0 \cdot 4$	$0 \cdot 3$	0.8	0.3	0.8	0.2	$0 \cdot 8$	$0 \cdot 6$
12	1,870	2,203	235	3,095	2,345	256	$5 \cdot 7$. 6.5	$3 \cdot 0$	$5 \cdot 2$	$5 \cdot 7$	$2 \cdot 9$	$5 \cdot 2$	2.7	4.4	2.7	$1 \cdot 3$:
13	2,067	2,595	418	3,429	3,544	537	6.3	7.7	$5 \cdot 3$	$5 \cdot 8$	$8 \cdot 6$	$6 \cdot 1$	$6 \cdot 2$	$4 \cdot 8$	$6 \cdot 6$	$5 \cdot 6$	1.4
14	814	960	100	1,289	1,337	115	2.5	2.8	$1 \cdot 3$	$2 \cdot 2$	$3 \cdot 3$	1.3	$2 \cdot 3$	$1 \cdot 1$	$2 \cdot 5$	1.2	1.0
15	437	289	37	866	322	40	1.3	0.9	0.5	1.5	$0 \cdot 8$	$0 \cdot 5$	$0 \cdot 7$.	$0 \cdot 4$	0.6	0.4	$0 \cdot 3$ \%
														-			
16	120	85	43	267	111	47	0.4	$0 \cdot 3$	0:5	$0 \cdot 4$	$0 \cdot 3$	0.5	$0 \cdot 2$	0.5	$0 \cdot 2$	$0 \cdot 5$	$0 \cdot 1$
17	213	135	33	633	150	36	$0 \cdot 6$	0.4	0.4	$1 \cdot 1$	0.4	0.4	$0 \cdot 3$	0.4	. $0 \cdot 3$	$0 \cdot 4$	0.2
18	81	42	66	206	48	71	$0 \cdot 2$	$0 \cdot 1$	0.8	0.3	$0 \cdot 1$	$0 \cdot 8$	$0 \cdot 1$	0.8	$0 \cdot 1$	0.7	$0 \cdot 2$
19	208	201	64	371	220	68	$0 \cdot 6$	$0 \cdot 6$	0.8	0.6	0.5	0.8	0.5	0.7	$0 \cdot 4$	0.7	0.4
20	95	101	61	286	114	66	$; 0 \cdot 3$	$0 \cdot 3$. 0.8	0.5	$0 \cdot 3$	0.8	$0 \cdot 2$	0.7	$0 \cdot 2$	0.7	$0 \cdot 3$
21	103.	81	57	236	:98	60	. 0.3	.0:2	0.7	$0 \cdot 4$	0.2	0.7	0.2	0.7	$0 \cdot 2$	0.6	0.2
22	61	55	52.	108	$\dot{59}$	56	0.2	0.2	$\cdot 0.7$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 6$	$0 \cdot 1$	0.6	$0 \cdot 1$	0.6	$0 \cdot 1$
23	20	7	32	54	9	35	$\bigcirc 0.1$. 0.0	:0.4	$0 \cdot 1$	$0 \cdot 0$	0.4	0.0	0.4	0.0	$0 \cdot 4$	$0 \cdot 1$
- 24	29	29	43	60	35	46	$0 \cdot 1$	$0 \cdot 1$	0.5	$0 \cdot 1$	$0 \cdot 1$	0.5	$0 \cdot 1$	0.5	$0: 1$	0.5	$0 \cdot 3$
25	51	22	32	120	28	37	0.2	$0 \cdot 1$. 0.4	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 4$	$0 \cdot 1$	$0 \cdot 4$	$0 \cdot 1$	$0 \cdot 4$	$0 \cdot 1$
- 26	88	88	49	132	115	52	$\because 0.3$. 0.3	\bigcirc	0.2	$0 \cdot 3$: 0.6	$0 \cdot 2$	0:6	0.2	0.5	$0 \cdot 1$
. 28	43	101	43	87	109	48	. $0 \cdot 1$	$0 \cdot 3$	${ }^{1}$	$0 \cdot 1$	$0 \cdot 3$	0.5	$0 \cdot 2$	$0 \cdot 5$	$0 \cdot 2$	0.5	0.0
:. 29	158	74	. 108	351	92	114	0.5	0.2	1-4	0.6	$0 \cdot 2$	1.3	0.2	1.2	0.2	$1 \cdot 2$	$0 \cdot 8$
.. 30	179	164	72	321	180	79	$0 \cdot 5$	0.5	'0.9	$0 \cdot 5$	0.5	0.9	0.4	0.8	$0 \cdot 3$	0.8	0.6
31	130	234	104	246	2 20	108	$0 \cdot 4$	${ }^{1} 0.7$: 1.3	0.4		1.2	0.6	1.2	0.5	$1 \cdot 1$	0.8
Means-																	
20 days.	328	330	79	504	411	88											
31 days.	...	421	87 533	06			-								

Table XXVII.-June, 1912. Squares of Daily Ranges (Unit 100 ${ }^{2}$) and Ratios.

	2 Componenta.			3 Components.			2 Components.		3 Components.		Components.		3 Cormponenta.		Components.		${ }^{\text {I. }}$
	c.D.	c.e.	E.	c.j.	c.e.	E.	C:m.	c.e.	C.D.	c.e.	c.D.	E.	c. C .	E.	x.	12.	
column...	1	2	3	4	5	${ }^{6}$	7.	8	9	10	11	12	13	14	15	16	17
Date.																	
1	2,009	499.	95	3,781	687	97	4.6	$1 \cdot 3$	4.0	1.5	5.1	1.3	$4 \cdot 5$	1.3	$1 \cdot 2$	1.2	1.0
2	431	742	80	769	1,122	84	1.0	1.9	0.8	$2 \cdot 4$	$1 \cdot 1$	$1 \cdot 1$	0.9	$1 \cdot 1$	$1 \cdot 1$	1.0	0.8
3	602	662	82	795	826	86	$1 \cdot 4$	1.7	0.8	1.8	1.5	$1 \cdot 1$	$0 \cdot 9$	$1 \cdot 1$	1.1	1.1	0.8
. 4	104	82	57	$26 \overline{3}$	89	61	0.2	0.2	$0 \cdot 3$	0.2	$0 \cdot 3$	0.8	$0 \cdot 3$	0.8	0.8	0.8	0.2
5	60	61	54	251	67	55	0.1	$0 \cdot 2$	0.3	0.1	$0 \cdot 2$	${ }^{0} 0.7$	0.3	0.7	0.7	0.7	0.0
6	47.	..	46	118	?	. 49	-		0	-	0.1	0.6	0.1	0.6	$0 \cdot 6$	$0 \cdot 6$	0.1
7	- 59	-65	56.	99	71	59	$0 \cdot 1$	0.2	0.1	$0 \cdot 2$	0.2	0.8	$0 \cdot 1$	0.8	0.7	0.7	0.6
8	2,103	2,410	203	4,965	2,699	220	4.8	6.2	$5 \cdot 3$	5.9	$5 \cdot 4$	2.8	$5 \cdot 9$	2.8	2.7	2.7	1.2
9	1,768	1,591	135	4,328	1,712	146	$4: 0$	4.1	$4 \cdot 6$	3.7	4.5	1.9	5.1	1.9	1.8	1.8	0.9
10	616	951	124	1,589	1,027	136	1.4	$2 \cdot 4$	1.7	2.2	$1 \cdot 6$	1.7	19	1.7	$1 \cdot 6$	1.7	0.9
11	487	310	61	1,030	370	64	1.1	0.8	1.1	0.8	1.2	0.8	$1 \cdot 2$	0.8	0.8	0.8	0.6
12	145	199	64	367	263	67	0.3	0.5	0.4	0.6 .	$0 \cdot 4$	0.9	0.4	0.9	0.8	0.8	0.6 0.3
13	71	63	64	203	80	68	0.2	0.2	0.2	0.2	$0 \cdot 2$	0.9					
14	190	190	54	486	209	57	0.4	$0 \cdot 5$	0.5	${ }_{0}^{0.2}$	0.5	0.9 0.7	0.2 0.6	0.9 0.7	0.8 0.7	0.9 0.7	0.1 0.2
15	55	...	60	111	64	...	¢..	$0 \cdot 1$	0.8	$0 \cdot 1$	0.8	0.7 0.8	$\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$	0.2 0.1
16	42		74	90	\ldots	79					$0 \cdot 1$	1.0	0.1	1.0	1.0	1.0	0.1
17	91.	49	81	123	65	83	…	0.1	\% 0.1	. 0.1	$0 \cdot 2$	1.1	0.1	. 1.1	1.0 1.1	1.0	${ }_{0}^{0.1}$
18	102	40	67	274	46	70	0.2	0.1	0.3	0.1.	$0 \cdot 3$	0.9	$0 \cdot 3$	0.9	0.9	${ }_{0}^{1-9}$	0.3 0.2
- 19	28	49	31	67.	61	37	$0 \cdot 1$	0.1	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.4		0.5			
. 20	43	19	34	68	22	36	0.1	0.0	0.1	0.0	0.1	$\stackrel{0.4}{0.5}$	0.1 0.1	0.5	0.4 0.4	0.5 0.4 0.4	0.1 0.1
21	${ }^{65}$	51	55	84	63	60	0.1	0.1	0.1	0.1	0.2	0.8	0.1	0.8	0.7	0.8	0.1 0.2
. 22	72	63	59	131	92	60	0.2	$0 \cdot 2$	0.1	$0 \cdot 2$							
23	294	175	77	499	196	84	0.7	0.4	$0 \cdot 1$	$0 \cdot 2$	0.2	0.8 1.1	$0 \cdot 2$	0.8 1.1	0.8 1.0	0.8 1.0	0.6 0.9
24	212	205	75	384	248.	79	0.5	$0 \cdot 5$.	$0: 4$	0.5	0.5	1.0	0.5	1.0	1.0	1.0	0.9 0.6
25	\cdots	${ }^{63}$	53		69	55											
${ }^{26}$	111	86	42	195.	97	43	0.3	0.2	0.2	$0 \cdot 2$	0.3	0.6	$0 \cdot 2$	0.6	0.7 0.6	0.7	0.2 0.2
27	...	789	149	...	1,052	152		...	\therefore	$0 \cdot 3$	0.6		0.6	0.6	0.5 1.9	0.2 0.8
28	\cdots	416	82	\ldots	507												
29	\ldots	516	114	\ldots	582	122	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots		1.1	1.1	0.9 0.8
30	\cdots	127	45	...	167	48		...	\cdots	...	\cdots	\cdots	\ldots	\cdots	$0 \cdot 6$	1.5 0.6	0.8
22 days.	439	389	...	943	460	...											
25 days.	392	...	73	843	\cdots	78								..			
All days available.	(392)	(388)	76	(843)	(463)	80											

Table XXVIII.-July, 1912. Squares of Daily Ranges (Unit 100 ${ }^{2}$) and Ratios.

Table XXIX.-August, 1912. Squares of Daily Ranges (Unit 100 γ^{2}) and Ratios.

\ddagger 2032-F

Table XXX.-September, 1912. Squares of Daily Ranges (Unit 100r${ }^{2}$) and Ratios

Table XXXI.-October, 1912. Squares of Daily Ranges (Unit 100 ${ }^{2}$) and Ratios.

	2 Components.			3 Components.			2 Com-		3 Components.		2 Components.		3 Com-ponents. poneдts		Components.		I.	
	C.D.	c.E.	E.	C.D.	c.E.	E.	C.D.	C.E.	O.D.	c.E.	c.D.	E.	c.D.	E.	C.D.	${ }^{\text {c }}$ c.D.		
Column.	1.	2.	3.	4.	5.	8.	7.	8.	9.	10.	11.	12.	13.	14,	15.	16.	17.	
Date.										$2 \cdot 3$								
	2,627	1,136	156	3,736	1,421	186	$3 \cdot 3$	$2 \cdot 1$.	$2 \cdot 9$	$2 \cdot 3$	3.5	2.0	3.0	$2 \cdot 1$	$3 \cdot 4$	3.0	1.0	
2	273	172	25	375	209	\cdots	$0 \cdot 3$	$0 \cdot 3$	0.3	$0 \cdot 3$	0.4	0.3	\cdots	\cdots	0.3	0.3	0.0	
3	544	370	45	916	443	46	0.7	$0 \cdot 7$	0.7	0.7	0.7	0.6	0.7	0.5	0.7	0.7	0.6	
4	351	\cdots	42	708	\ldots	44	...	\ldots	\ldots	\ldots	0.5	$0 \cdot 5$	0.6	0.5	0.4	0.6	0.3	
5	189	148	45	388	184	46	0.2	0.3	$0 \cdot 3$	$0 \cdot 3$. 0.3	0.6	0.3	0.5	$0 \cdot 2$	0.3	0:0,	
6	319	113	54	544	153	55	0:4	$0 \cdot 2$	0.4	0.2	0.4	0.7	0.4	0.6	0.4	0.4	$0: 1$	
7	342	350	57	527	411	62	0.4	0.7	0.4	0.7	0.5	0.7	0.4	0.7	0.4	0.4	: 0.4	
8	763	552	54	1,094	600	56	1.0	1.0	0.9	1.0	1.0	0.7	0.9	0.6	1.0	0.8	0.3	
9	510	347	30	837	376	31	0:6	$0 \cdot 7$	0.7	0.6	0.7	$0 \cdot 4$	0.7	$0 \cdot 3$	0.7	0.7	0.2	
' 10	736	\ldots	\ldots	1,136	\ldots	\cdots	\ldots	\ldots	...	\ldots	\cdots	\ldots	$0 \cdot 9$	0.9	0.4	
- 11	1,245	523	...	1,760	721	\ldots	1.6	1.0	1.4	$1 \cdot 1$	\therefore	-	1.6	1.4	1.2	
12	1,134	865	\ldots	1,601.	990	\ldots	144	1.6	1.3	$1 \cdot 6$	\cdots	...	1.4	$1 \cdot 3$	0.8	
13	990	734	73	1,333	853	106	$1 \cdot 2$	1.4	1.0	$1 \cdot 4$	13	0.9	$1 \cdot 1$	1.2	1.3	$1 \cdot 1$	0.9	
14	2,424	2,895.	822	4,248	3,155	905	$3 \cdot 0$	$5 \cdot 4$	$3 \cdot 3$	$5 \cdot 0$	$3 \cdot 2$	10.5	$3 \cdot 4$	$10 \cdot 1$	$3 \cdot 1$	$3 \cdot 4$	$1 \cdot 6$	
15	2,174	1,573	238	3,309	1,705	- 302	$2 \cdot 7$	$3 \cdot 0$	$2 \cdot 6$	$2 \cdot 7$	$\cdot 2.9$	$3 \cdot 1$	$2 \cdot 6$	$3 \cdot 4$	2.8	$2 \cdot 6$. 1.3	
16	852	835	113	1,367	933	124	$1 \cdot 1$	$1 \cdot 6$	$1 \cdot 1$	1.5	$1 \cdot 1$	$1 \cdot 4$	1-1	$1 \cdot 4$	$1 \cdot 1$	1.1	0.9	
17	882	519	59	1,327	591	75	$1 \cdot 1$	1.0	1.0	0.9	$1 \cdot 2$	0.8	1.1	0.8	$1 \cdot 1$	$1 \cdot 1$	0.7	
18	290	134	16	501	173	16	0.4	0.3	$0 \cdot 4$	0.3	$0 \cdot 4$	0.2	0.4	0.2	0.4	$0 \cdot 4$	0.0	
19	198	140	22	, 347	198	23	0.2	0.3	$0 \cdot 3$	0.3	$0 \cdot 3$	$0 \cdot 3$	0.3	0.3	0.3	0.3	0.0	
20	951	426	36	1,917	568	38	$1 \cdot 2$	$0 \cdot 8$	1.5	0.9	1.3	0.5	1.5	0.4	1.2	1.5	0.7	
21.	1,150	128	36	1,542	284	38	1.4	0.2	1.2	0.5	1.5	0.5	1.2	0.4	1.5	1.2	0.3	
22	605	309	27	1,144	483	28	$0 \cdot 8$	$0 \cdot 6$	0.9	$0 \cdot 8$	0.8	0.3	0.9	$0 \cdot 3$	0.8	$\dot{0} 9$	0.4	
23	'586	330	38	1,079	411	38	0.7	0.6	0.8	0.7	0.8	0.5	0.9.	$0 \cdot 4$	0.7	'0:9	0.3	
24	252	273	34	. 431	333	35	$0 \cdot 3$	0.5	'0.3	0.5	$0 \cdot 3$	0.4	$0 \cdot 3$	0.4	0.3	0.3	0.2	
25	618	315	30	1,030	384	31	0.8	$0 \cdot 6$	0.8	$0 \cdot 6$	0.8	$0 \cdot 4$	0.8	$0 \cdot 3$	$0 \cdot 8$	0.8	$0 \cdot 3$	
26	334	279	25	513	311	26	$0 \cdot 4$	0.5	$0 \cdot 4$	$0.5{ }^{\circ}$	0.4	0.3	0.4	$0 \cdot 3$	0.4	. 0.4	$0 \cdot 0$	
27	424	548	34	832	631	36	0.5	$1 \cdot 0$	0.7	1.0	0.6	$0 \cdot 4$	0.7	$0 \cdot 4$	0.5	0.7	0.3	
28	1,279	565	33	1,992	649	34	$1 \cdot 6$	$1 \cdot 1$	1.6	1.0	1.7	$0 \cdot 4$	$1 \cdot 6$	$0 \cdot 4$	1.6	1.6	0.7	
29	586	203	20	1,120	244	20	0.7	0.4	0.9	0.4	0.8	0.3	0.9	0.2	0.7	0.9	$0 \cdot 1$	
30	367	358	19	598	427	20	0.5	0.7	0.5	0.7	0.5	$0 \cdot 2$	0.5	0.2	0.5	0.5	0.2	
31	269	330.	12	698	434	13	0.3	0.6	0.5	0.7 .	$0 \cdot 4$	0:2	0.6	0.1	. 0.3	$0 \cdot 6$	$0 \cdot 1$	
$\begin{aligned} & \overline{\text { Means- }} \\ & 29 \text { days. } \end{aligned}$	799			\|1,280														
		533.	\ldots	1,280	630											.		
28 daya.	755	..	78	\cdots	\ldots	...											-	
27 daye.	\cdots	1,262	\cdots	90												
All days	783																	
				1,250	(630)	(90)												

Table XXXII.-Squares of Daily Ranges at Cape Denison (Unit 100 ${ }^{2}$) and Ratios.

Table XXXIII:-Squares of Daily Ranges at Cape Denison (Unit $100 \gamma^{2}$) and Ratios.

Table XXXIV.-Squares of Daily Ranges at Cape Denison (Unit 100 ${ }^{2}$) and Ratios.

Table XXXV.-Activity Ratios from Mean Monthly Values!

Month.		Two components.		Thiree Components.	
		C.E/C.D.	E/C.p.	C.E/C.D.	8/(t.D.
	April.....................................	0.85	0.13	0.61	0.08
	May	1.03 .	0.24	$0 \cdot 69$	$0 \cdot 15$
	June .f................................	0.89	$0 \cdot 19$. 0.49	- 0.09
	Jtuly	0.70	0.20	0.45	\cdots
	August	0.81 .	0.18	0.57 *	0.13
	September	0.75	0.23	0.56	$0 \cdot 16$
	October	0.70	$0 \cdot 10$	$0 \cdot 49$	0.07
	Meąns :..............................	0.81	0.18	0.55	0:11

Tabice XXXVI.-Sums of Squares of Daily Ranges. Monthly Means (Unit 100 γ^{2}).

Column.	Cape Denison.						I.	Cape Evans.		Eskdalemutr. ${ }^{\text {a }}$	
	2 Comps .	8 Compe.	2 Comps:	8 Compe,	2 Comps.	退 3 Compa.		2 Comps.	3 Compe.	2 Comps.	3 Comps:
	1.	2.	3.	4.	5.	$:^{6}$	7,	8 8,	0.	10.	11.
1912.											
April	638	1,189	22	20	688	1.7	0.54	465	577	82	00
May	328	594	. 29	29	...	1.8	0.43	421	533	87.	96
June	392	843	25	- 25	...	$2 \cdot 2$	0.44	388	463	76	80
July	368	725	29	27	387	$2 \cdot 0$	0.42	249	308	73	\cdots
Auguat	593	950	31	31	...	1.6	$0 \cdot 49$	431	501	105	121
September	578	886	30	30 :	...	1.5	$0 \cdot 47$	431	495	131	141
October :	783	1,256	31	31	, ...	1.6	$0 \cdot 46$	533	630	78	90.
November......... 1913.	1,264	2,080	30	26	1,268	1.6	$0 \cdot 49$	…
January	909	1,457	17	17	\ldots	1.6	0.58	\cdots
February	529	906	28	28	..:	1.7	0.53	...		- ...	
March	378	763	31	31	...	2.0	0.53	\ldots	...		
April	276	471	30	30		1.7	0.54			\because	
May	269	474	30	30	...	1.8	0.45		...	\cdots	...
June ..	128	216	30	30	...	1.7	0.45	..:	\because
July	141	219	31	31	...	1.6	1. 0.42	\cdots	\ldots

TAbLE XXXVII.-International Character Figures and Values of $\Sigma^{2}{ }^{2}$ at Cäpe Deñisön.

Table XXXVIII.-International Character Figures and Cape Denison Chàracter Ratios.

Internstional Character. .	$\therefore \because \cdots$ Two Horizontal Components.					Three Rectangular Components.				
	Δ	- ${ }^{\text {B }}$	$\mathbf{B}^{\mathbf{1}}$	C	${ }^{1}$	A	B	$\mathbf{H}^{\mathbf{1}}$	C	${ }^{2}$
0.0	$\cdot 50$	-29	$\cdot 22$	$\cdot 13$	$\cdot 18$	$\cdot 48$	$\cdot 33$	$\cdot 18$	$\cdot 15$	$\cdot 18$
$0 \cdot 1$. 39	-40	$\cdot 49$	$\cdot 20$	-32	-43	. 49	$\cdot 41$. 21	. 35
0.2	$\cdot 78$	$\cdot 51$	$\cdot 53$. 34	. 48	. 75	. 54	. 45	-39	$\cdot 47$
0.3	$\cdot 74$. 67	$\cdot{ }^{56}$	$\cdot 52$. 34	$\cdot 77$. 75	$\cdot 56$	-58	. 40
0.0 \& 0.1	$\cdots 0.5$	0.3	$0 \cdot 4$	0.2	0.3	0.5	0.4	0.3	0.2	0.3
0.2 \& 0.3	$0.8{ }^{\prime}$	0.6	0.5	0.4	0.4	. 0.8	0.7	0.5	0.5	$0 \cdot 4$
$0.4 \& 0.5$	0.8	$0 \cdot 8$	0.7	0.6	0.5	0.8	0.9	0.6	$0 \cdot 6$	0.6
0.6 \& 0.7	0.6	$1 \cdot 1$	0.8	$1 \cdot 3$	0.7	0.8	$1 \cdot 1$	0.8	$1 \cdot 1$	0.7
0.8 \& 0.9	1.5	$1 \cdot 1$	1.3	1.7	2.7	1.4	$1 \cdot 0$	1.2	1.6	- 2.6
1.0 to 1.4	$2 \cdot 2$	$2 \cdot 3$	2.0	3.8	3.7	$2 \cdot 0$. $2 \cdot 3$	$2 \cdot 0$	$3 \cdot 9$	$3 \cdot 6$
>1.4	1.9	$3 \cdot 5$	$4 \cdot 9$	$4 \cdot 3$...	2.0	$3 \cdot 3$	6.2	$3 \cdot 3$...

Table XXXIX.-Cases when ΣR^{2} from Horizontal Components Above and Below the Mean at Pairs of Stations.

Stations Compared.		April.	May.	June.	July.	August.	September.	October.	All
Cape DenisonAbove \qquad	Cape EvansAbove \qquad	8	4	- 5	. 5	8	6	. 7.	43
(Above	Below ...	0	. 3	1	- 0	1	4	\cdots	- 13
. Below	Above ...	0	1	1	3	1.	2	- 2	- 10
Below	Below	14	21	15	20	19	18	.. 16	123
Cape Denison- .	Eskdalemuir-								
Above	Above ..	6	5	6	3	8	2	- 4	34
Above	Below ..	2	2	1	2	2	8	$\dot{6}$	23
Below	Above	0	2	4	4	1	1	- 0	12
Below	Below	14	20	14	20	19	19	- 18	124
Cape Evans-	Eskdalemuir-								
Above	Above	8	5	9	4	7	2	4	39
Above	Below	1	1	0	4	2	6	4	18
Below	Above .	1	2	1	2	2	1	. 0	
Below	Below	20	23	17	20	17	21	19	137

Table XL:-Cases when Vertical Force Range Above and Below the Mean at Pairs of Stations compared.

Stations Compared.		Aprll.	May.	June.	July.	August.	Septem: ber.	October.	$\underset{\text { months. }}{\text { All }}$
Cape DenisonAbove	Cape EvansAbove	6	7	7.	8	10	6	9	53.
Above	Below	7	2	1	1	3	5	4	23
Below	Above	2.	0	4	1	1	5	2	15
Below	Below	13	22	16	18	15	14	14	- 112
Cape Denison-	Eskdalemuir -								
Above	Above	7	5	4	...	8	5	5	34
Above	Below	6	4	4	-..	6	6	5	31
Below	Above	2	4	7	...	0	3	2	18
Below	Below	13	18	15	\cdots	17	15	15	93
Cape Evans-	Eskdalemuir -								
1. Above	Above .	5	5	5	...	7	5	5	32
, Above	Below .	3	2	6	...	4	6	4	25
\therefore 'Below	Above	4	4	5	...	0	3 "	2	18
Below	Below	18	20	12	...	18.	15	15	98

Table XLI.-Squares of Daily and Hourly Ranges. June, 1912;

- Date.	Cape Denison.						Cape Rvans. \quad					
	H.			v.			N^{1}.			v.		
	Daily.	Hourly.	Ratio.	Dally.	Hourly.	Ratlo.	Daily.	Hourly.	Ratio.	Daily.	Hourly.	Hatlo.
1	1,452	1,854	1.3	1,772	1,353	0.8	210	273	$1 \cdot 3$	188	145	0.8
2	320	387	1.2	339	506	1.5	199	308	1.5	380	291	$0 \cdot 8$
3	458	540	1.2	193	394	2.0	114	188	1.6	164	125	0.8
					"							
4	72	84	1.2	161	- 171	1.1	23	48	$2 \cdot 1$	6	13	$2 \cdot 2$
5	41	75	1.8	190	186	1.0	13	- 43	$3 \cdot 3$: 7.	16	$2 \cdot 3$
6	22	56	2.5	71°	59	. 0.8	\therefore.	\ldots	...	**
. .7	18	30	1.7	40	- 43	$1 \cdot 1$	$\bullet 24$	16	0.7	6	5	0.8
8	1,197	1,742	1.5	2;862.	3,204	$1 \cdot 1$	1,011	1,114	1.1	289	316	\&1.1
9	967	2,373	2.5	2,560	3,123	1.2	1,089.	733	0.7	121	383	3.2
10	313.	606	1.9	973	1,441	$1.5{ }^{1}$	380	405	-1.1	76	. 131	- 1.7
11	240	454	19	543	1,343	2.5	. 166	264	-1.6	$\because 59$	103	$\therefore 1.7$
12	74	192	$2 \cdot 6$	222	302	$1 \cdot 4$	135	199	1.5	64	84	1.5
13	40	80	$2 \cdot 0$	132	142	$1 \cdot 1$	17	38	$2 \cdot 2$	17	21	1.2
14	144	192	1.3	296	354	1.2	58	75	$1 \cdot 3$	19	22	1.2
15	22	63	2.4	56	85	1.5	...	$\because \ldots$...	\because
16	: 12	35	2.9 .	48	63	1.3	\ldots	\cdots	\cdots	...	\ldots	...
17	18	44	$2 \cdot 4$	32	54	1.7	20	42	$2 \cdot 1$	16	12	0.8
18	67	70	1.0	172	115	0.7	13	29	$2 \cdot 2$	6	10	1.7
19	12	35	$2 \cdot 9$	38	49	1.3	29	25	${ }^{1}$	12	11	0.9
20	32	63	$2 \cdot 0$	25	38	1.5	4	14	$3 \cdot 5$	3	8.	$2 \cdot 7$
21.	18	54	3.0	19	41	$2 \cdot 2$	12	24	2.0	12	10	0.8
22	44	67	1.5	59	78	1.3	42	. 42	1.0	28	18	0.6
23	- 48	126	$2 \cdot 6$	204	265	$1 \cdot 3$	104	109	1.0	21	20	1.0
24	85	156	1.8	172	206	${ }^{1} 1.2$	144	163	$1 \cdot 1$	44	44	1.0
25	41	54	1-3	58	61	$\bigcirc 1.1$	31	43	1.4	7	10	$1 \cdot 4$.
26	$\cdot 72$	78	$1 \cdot 1$	85	122	1.4	69	54	. 0.8	12	13	$1 \cdot 1$
27	502	280	$0 \cdot 6$	166	189	$1 \cdot 1$	246	283	1.2	262	178	0.7
28	130	422	$3 \cdot 2$	259	306	1.2	117	167	1.4	90	82	$\bigcirc 0.9$
9	306	675	$2 \cdot 2$	713	1,139	${ }^{-1.6}$	213	$338{ }^{\circ}$	1.6	66	120	- 1.8
30	64.	141	2.2	169	255	1.5	. 48	100	$2 \cdot 1$	40	33	0.8
Means...	228	367	1.61	421	: 522	. 1.24	168	190	$1 \cdot 13$	75	- 83	- 1.11

$\ddagger 2032-($

Table XLII.-Squares of Daily and Hourly Ranges. September, 1912.

Table XLIII.-Antarctic Daily and Hourly Character Ratios añ International Characters. June, 1912.

	- . .Cape Denison.						Cape Evans.						Means from two Antarctic stations.		I.
	H.		v.		Means.		N^{1}.		v.		Means.				
	Daily.	Hourly.	Daily.	Hourly.	Daily.	Hourly.	Daily	Hourly.	Daily.	Hourly.	Daily.	Hourly.	Dally:	Hourly.	
Column \therefore.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.
Date.															
1	6.4	$5 \cdot 0$	$4 \cdot 2$	$2 \cdot 6$	$5 \cdot 3$	3:8	1.3	$1 \cdot 4$	$2 \cdot 5$	1:8	1.9	1.6	3.6	2.7 .	1.0
2	1.4	$1 \cdot 1$	0.8	1.0	$1 \cdot 1$	1.0	1.2	1.6	$5 \cdot 1$	$3 \cdot 5$	$3 \cdot 1$	$2 \cdot 6$	$2 \cdot 1$	1.8:	0.8
3	$2 \cdot 0$.	1.5	0.5	0.8	1.2	$1 \cdot 1$	0.7 .	1.0	2:2	1-5	$1 \cdot 4$	1:2	$1: 3$	1.2,	0.8
4	0.3	0.2	$0 \cdot 4$	0.3	$0 \cdot 3$	$0 \cdot 3$	0.1	$0 \cdot 3$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 2$	0.2	0.2,	0.2
5	0:2	0.2	0.5	$0 \cdot 4$	$0: 3$	0.3	$0 \cdot 1$.	$0 \cdot 2$	$0 \cdot 1$	0.2	0.1	0.2	$0 \cdot 2$	0.2	0.0
6	0.1	0.2	0.2	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$..:	\ldots	\cdots.	\ldots	\cdots	...	0.1
7	$0 \cdot 1$	0.1	. $0 \cdot 1$	$0 \cdot 1$	0.1	0.1	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$.	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.1 .	0.6 .
8	$5 \cdot 3$	4.7	6.8	6.1	6.0	$5 \cdot 4$	6.0	$\therefore 5: 9$	$3 \cdot 9$	3.8	$5 \cdot 0$	4.8	$5 \cdot 5$	$5 \cdot 1$	1.2
$\bigcirc 9$	$4 \cdot 2$	6.5	$6 \cdot 1$	6.0	$5 \cdot 2$	6.2	6.5	$3 \cdot 9$	1.6	4.6	$4 \cdot 1$	$4: 2$	4.6	5.2	0.9
10	1:4	1.7	$2 \cdot 3$	$2 \cdot 8$	1.8	$2 \cdot 2$	$2 \cdot 3$	$2 \cdot 1$	1.0	$1 \cdot 6$	$1 \cdot 6$	1.9	1.7	2.0	0.9
11	$1 \cdot 1$	1.2	$1 \cdot 3$	$2 \cdot 6$.	1.2	1.9	1.0	$1 \cdot 4$	0.8	1.2	0.9	1.3	1.0	1.6	0.6
12	0.3	0.5	0.5	$0 \cdot 6$	0.4	$0 \cdot 5$	0.8	1.0	0.9	1:1	$0 \cdot 8$	$1 \cdot 1$	0.6	0.8	0.3
13	0.2	0.2	0.3	0.3	$0 \cdot 2$	0.2	0.1	$0: 2$	0.2	$0 \cdot 3$	0.2	$0 \cdot 2$	0.2	0.2	0.1
14	0.6	0.5	0.7	0.7	0.7	0.6	0.3	$0 \cdot 4$	0:3	. 0.3	0.3	0.3	0.5	0.5	0.2
15	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.2	$0 \cdot 1$.	0.2	...	\ldots	\cdots	\cdots	$\therefore \cdot$	':.	\because	...	0.1
16	0.1	$0 \cdot 1$	0.1	$0 \cdot 1$	0.1	$0 \cdot 1$	\ldots	\ldots	\cdots	\cdots	\cdots	\therefore	\cdots	\cdots	0.1
17	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.1	0.1	$0 \cdot 1$	0:1	$0 \cdot 2$	0:2'	$0 \cdot 1$	0.2	0.2	$0: 1$	0.1	$0 \cdot 3$
18	0.3	$0 \cdot 2$.	0.4	$0 \cdot 2$	0.4	0.2	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.1	0:2	0.2	$8 \cdot 2$
19	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.1	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 1$	0.1	0.1	$0 \cdot 1$
20	$0 \cdot 1$	0.2	$0 \cdot 1$	0.1	0.1	$0 \cdot 1$	0.0	$0 \cdot 1$	0.0	0.1	0.0	$0 \cdot 1$ '	$0 \cdot 1$	0.1	$0 \cdot 1$
21	0.1	$0 \cdot 1$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 2$	0.1	0:1	0.1	$0 \cdot 1$	0.1	0.2
22	0.2	0.2	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 2$	0.2	0.3	0.2	$0 \cdot 4$	0:2	\bigcirc	0.2	$0 \cdot 2$	$0 \cdot 2$	0.6
- 23	0.2	0.3	0.5	0.5	$0 \cdot 3$	$0 \cdot 4$	0.6	$0 \cdot 6$	0.3	0.2	0.5	0.4	0.4	0.4	0.9
24	0.4	0.4	$0 \cdot 4$	$0 \cdot 4$	0.4	$0 \cdot 4$	$0 \cdot 9$	0.9	$0 \cdot 6$	0.5	0.7	0.7	0.6	0.6	$0 \cdot 6$
25	0.2	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.2	$0 \cdot 1$	0.2	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.2	0.1	0.2	0.2
26	0.3	0.2	0.2	0.2	0:3	0.2	$0 \cdot 4$	$0 \cdot 3$	$0 \cdot 2$	0.2	$0 \cdot 3$	0.2	$0 \cdot 3$	0.2	0.2
27	2.2	0.8	0.4 .	0.4	1.3	0.6	1.5	1.5	$3 \cdot 5$	$\cdot 2 \cdot 2$	$2 \cdot 5$	1.8	1.9	. 1.2	0.8
28	0.6	: 1.2	$0 \cdot 6$	$0 \cdot 6$	0.6	0.9	0.7	$0 \cdot 9$	1.2	$1 \cdot 0$	1.0	0.9	0.8	0.9 ,	0.9
29	$1: 3$	1:8	1.7	$2: 2$	1.5	$2 \cdot 0$	1.3	1.8	$0 \cdot 9$	$1 \cdot 4$	$1 \cdot 1$	1.6	1.3	1.8	0.8
30	$0 \cdot 3$	$0 \cdot 4$	0.4	0.5	$0 \cdot 3$	0.4	$0 \cdot 3$	0.5	0.5	0.4	0.4	: 0.5	0.4	0.4	0.3.

Table XLIV:-Antarctic Daily and Hourly Character Ratios and International Characters. September, 1912.

CHAPTER III.-HOURLY CHARACTERS: DIURNAL VARIATION OF -DISTURBANCE.

§18. Character figures 0 (quiet), 1 (moderatelly disturbed), 2 (highly disturbed) can obviously be assigned to intervals shorter or longer than a day. The scheme was applied to individual hours, primarily with a view to studying the diumal variation of disturbance. The figures were assigned as the result of general inspection; not of any exact measurement of amplitude. They thus suffer from similar uncertainties to the daily character figures. An hour might get a 2 in a quiet time for disturbance which in a disturbed time would have received a 1 . This ought not, however, to prejudice discrimination between the different hours of the day.

Before considering this principal object, we shall consider another use of hourly character figures. A daily character 2 may mean active disturbance throughout the whole day, or large disturbance confined to part of the day, possibly to a single hour. In the former case, every hour might receive a 2 , in the latter case twenty three hours might conceivably receive 0 's. Thus a day of daily character 2 might have for the mean of the hourly character figures anything from 2.0 to $0 \cdot 1$, and a comparison of daily and mean hourly character figures may thus throw a valuable light on the ordinary duration of disturbance. Such a comparison is made in Table XLV for each day for which the requisite data existed. The columns headed H give the mean of the 24 hourly characters; the columns headed D give the daily character. The last three lines give the mean value of the mean hourly character for days of which the daily characters were respectively 0,1 and 2 . Table XLVI gives for each month the lowest and highest mean hourly characters obtained by days having daily character figures 0,1 and 2 respectively.

At the one extreme we have May 18, May 23 and June 12, 191 $\dot{3}$, for which the mean of the hourly characters was $0 \cdot 1$. May 18 was a very exceptional kind of day. Its daily character figure as given in Table I was 0 , and the character ratios assigned to it in Table XXXIII were $0 \cdot 1$, both for the horizontal and all three components, but its international character was 0.7 . May 23 and June 12, on the other hand, were international quiet days, and were thus very probably quiet all over the world; each had 0 assigned to 22 hours out of the 24 . There was no day every hour of which got a 0 .

At the other extreme, we have July 5 and November 10,1912 , each of which had 2.0 as the mean of the hourly character figures. On July 5 one hour got a 1 , but on November 10 every hour got a 2. In fact 34 consecutive hours from November 9, 10 and 11 got 2's.

While it is possible for a day of daily character 2 to have the mean of its hourly characters as low as $0 \cdot 1$, there were, as Table XLVI shows, only three months out of the fifteen in which a day of daily character 2 had the mean of its hourly characters smaller than $1 \cdot 0$, and there were in all only five such days. All included a number of
hours of character 0 ; but in each group of hours, either at the beginning or end of the day, were of character 2. Days quist except for one or two hours of very large disturbance were practically non-existent. The most outstanding cases of difference between the two sets of figures in Table XLV are discussed individually below.

April 11, 1912, daily character 1, meạn hourly character 0.5, was mainly very quiet, fifteen successive hours getting 0 's, but active disturbance in the earlier hours justified a 1.

April 13, 1912, has already attracted attention owing to the difference between the character figures 2 at Cape Denison and 0 at Cape Evans. The mean 0.8 of its hourly character figures arose from four 2 's, ten 1 's and ten 0 's.'. The two adjacent days., with somewhat larger mean hourly character figures, got only 1. But while the 13th had more quiet hours than the 12th, its disturbed hours were the more disturbed. The fact that the 14 th got only a 1 might be partly explained by the contrast between it and the 15th, which was a somewhat highly disturbed day:

April 27, 1912, was the exact opposite of April 11. Its daily character was 0 , while the mean of the hourly characters was $0 \cdot 9$. The day was really on the border line between a 0 and a 1. There was a good deal of unquietness, but no single large movement.

May 3, 1912, daily character 1 , mean of hourly characters $1 \cdot 5$, fourteen hours, getting 2's. This was a case in which a number of consecutive hours were so similarly disturbed that they had to get the same character figure. They got 2 's, but the disturbance was on the border line between 1 and 2.

May 25, 1912, was a similar case to April 27. The daily character was 0 , while the mean of the hourly characters was 0.8 . A good many hours, closely alike as regards disturbance, got i's, while they might perhaps equally well have got 0 's.

June 12, 1912 had a daily character 1, while the mean of the hourly characters was $1 \cdot 4$, ten hours getting 2 's. Disturbance was persistent'rather than large during the six earliest hours, which got 2's. The day's getting a 1 rather than a 2 may have arisen from the contrast with the four immediately preceding days, which were considerably more disturbed.

June 19, 1912, daily character 1, mean of the hourly characters 0.5 . After 6 h ., the day was very quiet, but three of the earlier hours got 2 's, and the disturbance fairly justified a 1 for the day.

June 20, 1912, daily character 1, mean of hourly characters 0.5 was on the border line between a 0 and a 1.

June 24, 1912, daily character 1, had a mean hourly character $1 \cdot 3$, arisising from two 0 's, fourteen 1 's and eight 2 's supplied by the eight earliest hours. This was a border-line case where the early part of the day merited a 2, while the last part merited a 1, if not a. 0 .

June 25,1912 , daily character 1 , mean hoùrly chäracter 0.5 . After 4h., the day was certainly of character 0 ; but the disturbance earlier in the day appeared incompatible with $a 0$.

July 15, 1912, daily character 1, mean hourly character 0.5 . Eleven hours got 0 's and thirteen got 1 's. The day was on the border-line between 0 and 1 .

August 5,1912 , daily character 2 , mean hourly character $0 \cdot 7$, arising from tén 0 's, eleven 1's and three 2's, was really on the border line between 1 and 2. The first half of the day was so quiet it might have got a 0 , but there was continuous disturbance after 14h.

August 11; 1912, daily character 1, mean hourly character $0 \cdot 4$. After 6 h. the day was décidedly of character 0 , but the disturbance in the earlier hours precluded a 0 for the day.

September 3, 1912, daily character 1 , mean hourly character 0.5 . Up to 21 . the day was unmistakably of character 0 , but an S.C. (sudden commencement) intervened. The last three hours got 2 's but the disturbance appeared insufficient to justify a 2 for the day.

September 25, 1912, daily character 2 , mean hourly character $0 \cdot 8$, arising from twelve 0 's, five 1 's and seven 2 's. The greater part of the day was really quiet, but there was disturbance in both the early and the late hours, and that in the early morning was large enough to call for a 2 for the day.

October 22 , 1912, daily character 0 , mean hourly character $1 \cdot 0$, arising from six 0 's, eleven 1's and seven 2 's. If this day had occurred during a quiet season it would have got at least a 1 , but it was decidedly quieter than the adjacent days, and part of the day was unusually quiet for October.

February 11, 1913, daily character 0, mean hourly character $1 \cdot 0$, arising from three 0 's, eighteen 1's, and three 2 's. In a quiet month this day would probably have got a 1 , but there was no really large movement, and I's were awarded to a number of hours which might perhaps with equal justice have got 0's.

March 25, 1913, daily character 0 , mean hourly character $0 \cdot 9$, arising from four 0 's, nineteen 1 's and onë 2 . This was a border-line case between a 0 and a 1 . The hourly l's in a good many cases might perhaps equally well hàve been 0 's. The oñe 2 arose from a short " Bay " of no great amplitude.

April 12, 1913, daily character 1 , mean hourly character $1 \cdot 4$, arising from fifteen l's and nine 2's. The day was quieter than the three preceding days which got 2 's, and the contrast might be partly responsible for its getting a 1 .

May 19, 1913, daily character 1 , mean hourly character $0 \cdot 4$, arising from fourteen 0 's and ten l's. After 12 h . the day certainly merited a 0 , but the oscillations during the early hours fairly justified a 1.

May 27, 1913, daily character 1, mean hourly character $0 \cdot 4$, arising from sixteen 0 's, 'seven 1's and ore 2. A somewhat prominent bay between 13 h . and 14 h . ruled out the 0 which otherwise the day might have got.

June 11, 1913; däly character 1, mean hourly character 0.2, arising from twenty 0 's and four 1's.' Most of the day was conspicuously quiet, but between 12 h . and 14 h ., there were two well marked though not deep bays.

June 15, 1913, daily character 1 , mean hourly character $0: 4$; arising from fifteen 0 's and nine 1 's. This was a doubtful case. The disturbance between 2 h . and 5 h . seemed incompatible with a daily character 0 .

June 16, 1913, daily character 1, mean hourly character $0 \cdot 4$, arising from fourteen 0 's and ten l's. This again was a borderline case. After 13h. the day was decidedly of character 0 .

July 2,1913 , daily character 0 , mean hourly character $0 \cdot 7$, arising from eight 0 's, fifteen 1 's and one 2 . If the disturbance during the hour awarded a 2 had been at all prominent the day whould have got a 1 ; it was rather a doubtful case.
4.: \because July 18,1913 , daily character $1,:$ mean hourly character $0 \cdot 4$, arising from fifteen ' 0 's'and nine l's. A considerable part of the day was very quiet, but two well marked though not deep bays turned the scale in favour of a 1 .

July 23, 1913, daily character 1, mean hourly character $0 \cdot 4$, arising from fifteen 0 's, and nine l's. After 8 h . the day was very quiet, but the disturbance prior to 6 h . precluded a 0 for the day.

As appears from Table XLV, the means of the hourly characters for the groups of dayss with daily characters 0,1 and 2 are decidedly lower for the months April to July, 1913 than for the corresponding months of 1912. This suggests that besides a reduction in the amplitude of disturbance in 1913, there was an increased duration of quiet conditions. The study of exceptional cases in Table XLV left the ịmpression that less disturbance sufficed to secure a daily character 1 in 1913 than in 1912.
§19: As already explained, the primary object in view in assigning hourly characters was the determination of the diurnal variation of disturbance. If character figures were directly proportional to disturbance, there could be no question that the proper way of determining the diurnal variation for a particular month would be to take the mean for each of the 24 hours of the hourly character figures assigned throughout the month. This is the course adopted in Table XLVII, which gives the results so obtained for Cape Denison from each of the fifteen months for which data existed. Buton special occasions character 2 may imply ten times as much disturbance as the ordinary character 1. Thus results from the treatment of character figures as mere numbers. have to be accepted with caution. ' For instance, in a month of 30 days we could get
the same mean character figure for two hours, one of which received a il on every day of the month, while the other received a 0 on 15 days and a 2 on the other fifteen days. This makes it desirable to examine the incidence of 0 's and 2 's, as well as the variation of the mean character figures. Tables XLVIII and XLIX supply statistics as to the diurnal variation of 0 's and 2 's at Cape Denison. They should be studied conjointly with Table XLVII:

At the foot of the tables results are given separately for the whole fifteen months, for the seven months April to Octöber, 1912,-for which comparable data were available for Cape Evans; for the seven winter months May to August; 1912, and May to July, 1913 , for the five equinoctial months April, September, October, 1912, and March, April, 1913, and finally for the three summer months November, 1912, and January and February, 1913. In Tables XLVIII and XLIX the results for the groups of months are expressed as percentages of the mean from the whole 24 hours. The highest and lowest values of the day, whether absolute sums or percentages of the mean, are in heavy type.

Tables XLVII to XLIX all show a prominent diurnal variation. Considering first the results from the whole fifteen months, we observe for the hour ending at 2 h . G.M.T. a conspicuous principal maximum in Tables XLVII and XLIX, and a conspicuous minimum in Table XLVUI. In-other words, 1h.-2h:-G:M.T: (i.e., practically-the 60 minutes centering at Ilh. L.M.T:) provides the smallest number of quet höus, the greatest number of hours of character 2, and the highest mean character figure, and thus according to all the criteria it is in the average month the most disturbed hour of the 24. The maximum is not of a peaked kind, the difference between the hours ending at 2 h . and at 3 h . G.M.T. being trifling.

Tables XLVII and XLIX show ạ much smaller but still decided-secondary maximum in the hour ending at 14h., and Table XLVIII has a secondary minimum at the same hour. "Thus the tables agree in a slight recrudescence of disturbance; with its maximum shortly before local midnight. Tables XLVII to XLIX suggest the division of the day into a more disturbed ten hours ending at 6 h . G.M.T. ($15 \frac{1}{2}$ hours L.M.T.), and a less disturbed fourteen hours ending at 20h. G.M.T.

The results from the seven months April to October; 1912, are in remarkable accordance with those from the whole fifteen months. The principal difference is that while the fifteen months show a somewhat poorly-defined principal minimum of disturbance in Table XLVII, the values for 9 h : and 11h. being identical, the seven months show a clearly-defined minimum at 10 h . In both cases, however, there is a minimum at 17h. very little behind the carlier one. Tables XLVII and XLIX show little; if any dependence of the time of maximum disturbance on the season of the year. . In the equinoctial season in Table XLVIII there are two hours', and in the sumperer season seven, when character 0 was unrepresented. In either case the hour ending at $2 h$. was one of those without 0 's.

[^1]A double diurnal oscillation is recognisable in each of the three seasons in all three tables, but it is decidedly more conspicuous in winter than in the other seasons, and is best seen in Table XLIX. In that table the percentage figures at 14h. and 15 h . in winter both exceed 100 , and are more than half the percentage at 2 h ., whereas in the summer season the entry under 14h. is. less than a quarter of the principal maximum. The minimum in the number of 0 's at 14 h . is prominent in Table XLVIII in the equinoctial as well as the winter season.

If we compare the monthly means of the hourly character figures in Table XLVII : with the corresponding means of the daily character figures in Table III, we see that they agree in making January slightly more disturbed than November, and in making each month of 1913 much quieter than the corresponding month of 1912. But Table XLVII makes June, 1913, the quietest month;' and May, 1913, rather quieter than July, 1913, while Table XX makes July, 1913, the quietest morith.

In considering the monthly totals in Tables XLVIII and XLIX, it must be : remembered that the months are of unequal lengths, and that some months, e.g., January, were not quite complete. The two tables are equally affected, and should be studied together. It will be seen that January was more conspicuous for the fewness of 0 's than for the-number of 2 's, and that what distinguished November-from February was the increased number of 2 's in the former month.

As regards the figures for the different seasons, some allowance-must be made for the fact that disturbance was clearly on the decline, and the three seasons have not the same mean date. It was earlier for the seven winter months than for the five equinoctial months, and earlier for the equinoctial than for the summer months. The differences in mean time were, however; small, and they were in the direction which we should expect to lead to an underestimate of the differences between the three seasons. We may thus infer with considerable assurance that winter is the quietest time, and that summer is considerably more disturbed than equinox. The latter phenomenon is not a usual one, but it was also conspicuous at Cape Evans in 1911-12:
§20. Tables L to LII give the data for Cape Evans which correspond with the seven-month data in Tables XLVII to XLIX,

Tables L and LII agree in putting the maximum of disturbance at Cape Evans in the hour ending at 22 h . and Table LI puts the minimum of 0 's at 21 h ., with 22h: almost identical. The excess of the entries at 22 h . in Tables L and LII over the entries at 2 h . are large, and equally decisive is the excess of the entrics at 2 h . over the entries at 22 h . in Tables XLVII and XLIX. Thus it seems established beyond a doubt that the diurnal variation of disturbance in terms of Greenwich or universal time is not thé same at Cape Evans and Cape Denison. .The maximum occurs some four hours later at the latter station, the difference in the times of occurrence
excceding the difference in local time (about $1 \frac{1}{2}$ hours). It may be added that at Cape Evans, as at Cape Denison, the hour of maximum disturbance seemed practically independent of the scason of the year. Thus the difference between the two stations appears to be fundamental.

The results as regards-the hour of minimum disturbance are much less decisive. Table I gives ilh as the hour of least mean character, and it is also the hour when 0 's are most numerous in Table LI. But Table LII contains a good many hours with fewer 2 's than 11 h ., and it shows a conspicuous minimum at 17 h . If; however, we take all the 1911 and 1912 data available for Cape Evans, we find that the hour for which 2's are least numerous varied with the season of the year. It was 17h. or 18 h . for the equinoctial and winter seasons, but for the year as a whole it was 8 h ., and in winter the number of 2 's was so small that accident might play a considerable part.

The hour when 0's were' most in evidence at Cape Evans was 11h: for the whole year and the equinoctial season, 10 h . for winter, and 9 h . for summer (a season not represented in Table LI). If we divide the day as at Cape Deniison into a quieter fourteen hours and a less quiet ten hours, the former period would commence at 3 h ., the latter at 17h.; i.e., three hours earlier than at Cape Denison. At Cape Evañs, as at Cape Denison, there was a decided double daily oscillation of disturbance in the equinoctial and winter months.
§ 21. Tables LIII to LV show results for Eskdalemuir corresponding to those for Cape Denison in Tables XLVII to XLIX, except that what was summer at the one station was winter at the other. • There is, however, one difference between the two stations which calls for montion. The hour of stopping and starting registration at Cape Denison varied a good deal. At Eskdalemuir the changing of papers took place almost invariably between 9 h. and 10 h . Thus the character for the hour ending at 10 h . depended on the judgment passed on two detachèd short piecés of curve, with of course a few minutes missing. If this peculiarity influenced the decision, and it is not improbable that it did, we should expect it to lead to an underestimate of disturbance.

Where Tables LIII and LV are in best agreement is as regards the hour of minimum disturbance. In winter the lowest mean character figure and the largest number of 0 's appear at 6 h ., but with that exception ioh: appears as the hour of least disturbance, rivalled only by 11 h . in the equinoctial and winter seasons in Table LV. For the reason already stated, disturbance at 10 h : may be underestimated, but the figures for 9 h . in Table LIII and for 11h. in Table LV. strongly support the view that except in the winter months the minimum of disturbance occurs within an hour of 10 h .

The results as regards the hour of maximum disturbance are more conflicting. In Table LIII 16 h . or 17 h . supplies the largest mean character figures for the whole fifteen months and the summor season; but in either case there is a plateau of

Kigh valuës exténding from 15h. to 2ih. in the casee of the fifteen months, änd from 15 h . to 19 h . in the case of the summer months. In the equinoctial season the mean character figure at 24 h . is slightly in excess of those for the adjacent hours or for 16 h : or 17 h . In the winter season the entry under 21 h . is decidedly the highest. But even in summer the prominence of the mean character figure at 16 h . represents not an excess of 2 's but a deficiency of 0 's. The summer season agrees with the winter season and the whole fifteen monthis in putting the maximum number of 2 's at 2 ih . The extraordinary pre-eminence of this hour in winter is probably largely accidental; but obviously so far às large disturbance is concerned, 16 h . and 17 h . are very ordinary hours as compared with the five hours commencing at 20 h .

When comparing Eskdalemuir and Cape Evans, data were got out for $2 \dot{2}$ months commencing with February, 1911. The monthis of 1911 and of 1912 treated sepairately agreed with the present invëstigation in making the hour ending at 2ili. contain the greatest number of 2 's, the smallest number appearing in the hoirs ending at 10 h : and 11 h : Both yeárs also agreed in making the hour ending at 16 h :, the time. whien 0 's were fewest and the mean character figure was greatest. Thus it seems fairly cleär that at Eskdalemuir on the whole the hour ending at 21 h . is that when large disturbance is most prominent, but quiet conditions are distinctly more common at this and later hours than they are earlier in the afternoon about 16 h . The contrast at Eskdalemuir is between a more disturbed twelve hours commencing about 14 h . and a less disturbed twelve hours commencing about 2 h . The resemblancé between thie diurnal variation of disturbance at Cape Evans and Eskdalemuir in 1911 and 1912 was rather close when Greenwich or universal time was tised, and I calied attention to the possibility that disturbance over the whole earth might fölow universal timè, pointing out of course that such a conclusion would not be jisistified without mich more extensive investigation. It seems now clear fron the decided difference betiveen
 does not follow universal tims. But at all the three stations which we have considered here, Cape Deñison, Cape Evans and Esikdalemuir, eight hours 6h.-14h. appear to be relatively quiet and six hours 20 h . to 2 h . appear to be relatively disturbed. It seems's cirious that when universal time is ised, the incidence of distirbance should be closest between the tivo stations, Cápe Evans and Eskdalemuir, which differ most as regards local time.

The mean monthly values in Table LIIII agree with those in Table XLVII in May; June and July, quieter in 1913 than in 1912, but the difference between the two years seems much smaller at Eskdalemuir than at Cape Denison. Otherwise there is no resemblance between the two sets of figures. © November, January and February were quieter than the average month at Eskdalemuir, where they were wiuter months, whereas at Cape Denison, where they were summer months, they were the most disturbed months,
§ § 22. Table LVI investigates the parallelism.between the hourly character figures at Cape Denison and Cape Evans. It includes data from November, 1912; though registration ceased at Cape Evans before the end of the month. What the table gives is the number of occasions during each hour of the 24 when a given character. figure 0,1 or 2 at Cape Denison is associated with a given character 0,1 or 2 at Cape, Evans. The Cape Denison character appears in the top line, the Cape Evans character in the line below. For example, in April, 1912, during the hour ending at 1h. G.M.T., character 0 was assigned only once at Cape Denison, the corresponding character at Cape Evans being also 0; character 1 was assigned 14 times at Cape Denison, the corresponding Cape Evans figure being 0 on four occasions, 1 on nine occasions, and 2 on one occasion; finally character 2 was assigned 15 times at Cape Denison, the corresponding Cape Evans figure being 1 on eleven occasions and 2 on four occasions.

Table LVII makes a similar comparison of Cape Denison and Eskdalemuir. hourly charäcter figures, limited to the seven months, January to July, 1913.

Táble LVIII in the first half of its coliumns combines the results from the eight. moñthis treeatèd separately in Table LVI. The second half of the columns expresses the ressilts in the earlier columns as percentages. For example, for the hour ending. at ìh: G:M.T. there wère 106 occasions when character 1 was assigned at Cape Denison.. Of these 44 occasions, or 41 per cent., got 0 at Cape Evans, 60 or 57 per cent: got 1, and 2 or 2 per cent. got 2 .

In addition to the results for the individual 24 hours of the day and the 24 : höuirs cömbinièd; Táble LVIII gives percentagè resilts for eight 3 -hour groups and ${ }^{\prime}$ for two 6 -hour groups. The grouping was arranged to bring out more clearly the: sä̀iènt feâtures; which the irregularities in the figures for single hours tend to conceal. A striking contrast is presented by the two 6 -hour groups. If we take the group. ending àt 21 ., of the hours which got a a 0 at Cápe Denison nearly half got a 1 at Cape Evans, of the hours which got a 1 at Cape Denison only one in ten got a 0 at Cape Evans and nearly one in seven got a 2, and of the hours which got a 2 at Cape Dënison more than half got a 2 at Cape Evans. On the other hand, if we take the group ending at 6 h ., of the hours which got a 0 at Cape Denison only about a ninth got 1 at Cape Evans, of the hours which got al 1 at Cape Denison nearly half got a 0 at Cape Evans, and of the hours which got a 2 at Cape Denison barely a third got a 2 at Cape Evans: All these results point to the conclusion that, as compared with Cape Evans, Cape Denison wạs exceptionally disturbed from 0h. to 6h. G.M.T., and exceptionally quict from 15 h . to 2 ih . : If we may judge by the fate of the hours awarded 0 at Cape Denison, the three hours ending at' 3 h . were relatively to Cape Evans the most disturbed at Cape Denison, and the three hours ending at 21 h . the least diṣturbed. The fact that there are groups of 3 or 6 consecutive hours which afford so considerable a contrast between Cape Denison and Cape Evans is entirely in accordance with the conclusions reached above as to a difference between the diurnal variation of disturbance at the two stations.

Table LIX does for Cape Denison and Eskdalemuir what Táble LVIII did for Cape Denison and Cape Evans. In this case the two 6-hour intervals which afford the greatest contrast end at 6 h . and 18h. respectively. The former 6 -hours includes the time when Cape Denison is most disturbed, the latter 6 -hours the time when it is least disturbed as compared with Eskdelemuir. The thiree hours ending at 6h. include the time when Cape Denison relatively considered is most disturbed, and the three hours ending at 18h. the time when it is least disturbed as compared with Eskdalemuir.

One aspect of the case as regards the two Antarctic stations is best considered by taking Table LVIII in conjunction with Table LX. The latter table takes the groups . under characters 0,1 and 2 at Cape Evans ass fundamental, and shows what percentage of each of these groups were awarded characters 0,1 and 2 at Cape Denison. "For example, 1,653 hours in all were awarded a 0 at Cape Evans, and of these 935 or 57. per cent. got a 0 at Cape Denison, 686 or 41 per cent. got a 1 at Cape Denison and 32 or 2 per cent. got a 2 at Cape Denison. If the standards of disturbance applied at the two stations had been elike, and the stations had been equally disturbed, the percentage figures in Table LVIII and LX would have been identical. This is far from true, even of the 24 -hour results. The percentage of hours assigned 0 at Cape Denison which get 1 or 2 at Cape Evans is lower than the percentage of hours assigned 0 at Cape Evans which get 1 or 2 at Cape Denison.. Of hours assigned 1 at Cape Denison more get 0 than 2 at Cape Evans; whereas of hours assigned 1 at Cape Evans more get. 2 than 0 at Cape Denison. The results in short all point to the conclusion that either Cape Denison was the more disturbed station, or else that the standard of disturbance applied at Cape Denison was lower than that applied at Cape Evars. The contrast between the two 6 -hour groups in Table LX is quite as striking as in Table LVIII, and conveys the same implication, viz., that as compared with Cape Denison, Cape Evans was relatively quiet from 0 h . to 6 h . and relatively disturbed from 15 h . to. 21 h .

Table LXI does' for Eskdalemuir and Cape Denison what Table LX did for Cape Evans and Cape Denison. It should be considered in conjunction with Table LIX. * The two tables bear one another out in the conclusion that as compared with Cape Denison, Eskdelemuir was relatively quiet from 0 h . to 6 h . and relatively disturbed from 12 h . to 18 h . It is certainly roteworthy that of the $1,617^{\circ}$ hours awarded a 0 at Cape Denison only 8 , i.e., less than 0.5 per cent., got a 2 at Eskdalemuir. Of the 2,523 hours which got a 0 at Esikdalemuir, 215 or 8 per cent. got a 2 at Cape Denison. But in the six hours 1-6hi.; when Cape Denison was relatively highly disturbed, this percentage rose to 20 ; whereess for the six hours $13-18$.; when Cape Denison was relatively quiet it iell to 0 (or more exactly to $0 \cdot 27$).
§23. Besides their use for statistical purposes, hourly character figures serve to call attention to cases where disturbance was notably different at the different stations. It must be remembered that many hours are on the borderline between 0 and 1 , or between 1and 2. In such cases a good deal may depend on the contrast between the particular hour and adjacent loours. Agein, if disturbance is increasing or diminishing very
gradually, one may assign the same character figure to a long sequence of hours, the first and last of which if juxtaposed would certainly have got different characters. Thus consideration may be restricted to cases in which a 0 was assigned at the one station a 2 at the other. Even in that event it must be bome in mird that the 0 at the one station may have been on the borderline for a 1, and the 2 at the other station also on thè border line.

There were in all only ten hours which were awarded a 0 at Cape Denison but a 2 at Cape Evans. These are the most worthy of consideration, because character figures were on the whole higher at Cape Denison than at Cape Evans. Table XLV enumerates the ten cases, and gives the hourly ranges at the two stations, the $\cdot \mathrm{D}$ range at Cape Denison being given in terms of the equivalent force. In considering the ranges it should be remembered that they were not taken into account when assigning the character figures. Also a large hourly range may arise from a gradual movement in one direction, or from a single large oscillation, or it may be derived from a highly irregular hour's trace, in which several large oscillations are included. "We shall considèr the ten cases individually. The year in all cases was 1912 , and the hour stated represents the end of the 60 -minute interval.

August 3, 8h.-At Cape Denison the hour was decidedly quieter except in -D than the adjacent hours which got 1 's, and its getting a 0 was partly a contrast effect. At Cape Evans there was no striking movement, but 2 was quite the appropriate character, especially in E^{1}.

September 14; 12h.-At Cape Denison the hour was very similar to the subsequent hours, which also got 0 's. V was particularly quiet, D less so. . At Cape Evans there was quite a well marked "bay". disturbance, and the hour was much more disturbed than the subsequent hours.

September 17, 13h.-At Cape Denison, it was rather a borderline case. D merited a 1 , while V-merited 0 , and H was much quieter than during the subsequent hours. The contrast was probably partly accountable for the award of 0 rather than 1 . At Cape Evans E^{1} and V merited a 1, but the N^{1} movement was conspicuous. This was the beginning of a very considerable disturbance, which lasted for a number of hours.

September 20, 20h.-At Cape Denison this. was a doubtful case between a 0 and a 1. The hour did not differ much from the two adjacent hours, one awarded a 0 the other a 1. At Cape Evans a 2 was fairly due. All three elements were decidedly more disturbed than during the adjacent hours which got 1's.

October $30,17 \mathrm{~h}$.-At Cape Denison character was a fair c. The hour resembled the adjacent hours, which also got 0's. At Cape Evans 2 was quite the appropriate character. The movements were decidedly larger than in the adjacent hours which got i's.

November 2, 18h.-At Cape Denison 0 was fairly appropriate. The hour wâs decidedly quieter than the two adjacent hours which got l's. At Cape Evans the disturbance in E^{1} was clearly up to character 2, but in N^{1} and V the character was rather 1. The hour was distinctly quieter than the previous hour, but similarly disturbed to the subsequent hour, which also got a. 2 :

November 5, 15h.-At Cape Denison character was fairly $0, \dot{H}$ and V being decidedly quieter than in the adjacent hours which got l's. At Cape Evans N ${ }^{1}$ was only of character 1 , but E^{1} and V were decidedly of character 2 .

November 12, 16h.-At Cape Denison character was fairly 0 . "The hour was less quiet, at leasst in D , than the previous hour, which also got a 0 , but it was quieter at least in V than the subsequent hour which got a 1. At Cape Evans there were no very large movements, but the character was fairly 2 , especially in E^{1}.

November 13, 18 h .-At Cape Denison the character was unmistakably 0, H and V being both very quiet. At Cape Evans all three elements fairly deserved 2. Disturbance was decidedly greater than during the previous hour which got a 1; and was similar to that of the subsequent hour which also got a 2 .

November 16, 17h:-At Cape Denison character was fairly $0, \mathrm{H}$ being particularly quiet. At Cape Evans 2 was clearly appropriate, the movement in E^{1} being prominent. The adjacent hours which were similarly disturbed also got 2 's.

It will be observed that of the ten occurrences in Table LXII, seven are included within the six hours ending at 21h.; during which disturbance at Cape Denison was a minimum as compared with disturbance at Cape Evans, and nịne are ịncluded within the sịx hours ending at 6 h. during which disturbance at Cape Denison relatively considered was at its maximum. It will be noticed that the D change is the largest ạt Cape Denison in seven cases, and the E^{1} change the largest at Cape Evans in eight cases, and that the V change is in no case the largest at either station. Also on the average the change in F^{1} is more than double that in D , and the change in N^{1} more than double that in H . The average change in V at Cape Evans is less than double that at Cape Denison. But on the average day the changes in V at Cape Denison are much larger relative to those at Cape Evans than are the changes in the horizontal components. Thus the excess of the V changes at Cape Evans is really one of the most outstanding features of Table LXII, especially in the case of November 5, 12 and 16.

The thirty-two cases in which a 2 at Cape Denison was associated with a 0 at Cape Evans are enumerated in Table LXIII, which gives the hourly ranges in all the clements. There was no D trace on April 28, and that occasion was omitted entirely when calculating the mean hourly ranges at the foot of the table. While the mean H and V ranges at Cape Denison in Table LXIII are fully two and a half times the corresponding mean ranges in Table LXII, the D range in Table LXIII is the larger only
in the ratio 4: 3. In assigning character figures at Cape Denison minor attention was paid to the 'D. trace. This may have led to the inclusion in Table LXII' of one or two cases, e.g., September 17, 13h., when 0 was rather an underestimate of disturbance in-D at Cape Denison, and so have increased the mean D range somewhat unduly, but it could not have prejudiced the D range in Table LXIII, nor account for its being smaller than the ranges in H and V .

The reduction in the V range at Cape Evans in Table LXIII as compared with Table LXII is no greater than the reduction in the E^{1} range, but the generally small size of the V range at Cape Evans is one of the most striking features of Table LXIII; there are only seven cases out of the whole thirty-two in which it is not smaller than both the E^{1} and N^{1} ranges. There are twenty-one occasions in which the V range at Cape Evans is less than a quarter of the corresponding V range at Cape Denison, and seven occasions on which the former range is less than a tenth of the latter. The seven occasions include May 29, June 5 (both hours), June 14, June.26, July 21 and October 29 ; all fall in the early morning hours G.M.T. The most outstanding of them is June 5. The V trace at Cape Evans was néarly dead quiet, much quieter than the E^{1} and N^{1} traces; but at Cape Denison it was very highly disturbed, much more disturbed than the D or H traces. On the remaining six of the seven occasions mentioned above, the. V range at Cape Denison exceeded the D and H ranges, but not in most cases conspicuously.

While the V range at Cape Evans in Table LXIII was usually much less than the E^{1} and N^{1} ranges, it was the largest of the three on four occasions, viz., May 15, June 10, September 22 and November 2. On the first two and the last of these occasions, the Y range at Cape Denison was less-on two occasions conspicuously less-than the D and H ranges. On the remaining occasion though large it was exceeded by the H range.

The eight cases in which a 0 at Cape Denison was associated with a 2 at Eskdalemuir are enumerated in Table LXIV. All fall, it will be noticed, between 15h. and 19h. G.M.T. No satisfactory V data unfortunately were available for Eskdalemuir. In view of the enormous excess of the average hourly range at Cape Denison over that at Eskdalemuir, it is interesting to notice that in all except the first case in Table LXIV the Eskdalemuir ranges are unmistakably the larger. On March 21, the D range at Cape Denison slightly exceeds the W range at Eskdalemuir. The fact is that if attention had not been mainly concentrated on the H and V curves the hour might have got a 1 at Cape Denison. There was a fair bay movement westeast in the D trace, the prominent movement at Eskdalemuir being also a bay, but east-west. The bay movement did not commence at either station until after $18 \frac{1}{2} \mathrm{~h}$., lasting until nearly 20 h .; and the first half-hour was very decidedly of character 0 , except perhaps in the Eskdalemuir N trace. On the other seven occasions character was fairly 0 for all three elements at Cape Denison, though on April. 14 and June 28
conditions were decidedly lèss quaiet in D than in H and V . June 29 was rather a poor 2 at Eskdalemuir. On this, as on all the other occasions except: the first the N trace was decidedly more disturbed than the W trace.

Ón the last oc̃casion in Table LXXVY, July 24 , the N and the W trâces ăt
 of short duration was followed by a larger rise up to the crest which lâsted for some 40 minutes. But at Cape Denison there was nothing resembling an S.C., and conditions were veŕy quiet during the whole hour.

The cases in which a 2 at Cape Denison was associated with a 0 at Eskdalemuir are numèrous. They form in fact 25 per cent, of the whole number of cases in which a. 2 was awarded at Cape Dénisoñ. Their main featurres, their concentration betwéen 20 h . and 7 h . G.M.T. and their avoidance of the early (Greenwich) afternoon hours, àre âufficiently indicated in Table LIX.
§ 24. The measurements of the hourly ranges in June and September, 1912, at the Antarctic stations have already been employed in Tables LXI to LXIV in connection with the suggestions made for a numérical measure of the magnetic activity of the day. Other uses are illustrated in Tables LXV to LXIX. Tables LXV and LXVI give for each day of the two months at the two Antarctic stations the largest of the hourly ranges, the mean of the whole $2 \dot{4}$, and the ratio borie to it by the absolute daily range.
${ }^{3}$, Nhe ábsolite daily range of one of the elements, notably \dot{H}, or a combination of the daily ranges of two or three of the elements has been suggested as a criterion of the day's disturbance. It is obviously exto ósed to the same principal objection as the square of the range, viz., that it supplies the sâme measure of disturbance whetlier the whole day or only a single hour of the day is disturbed; so lông as the extreme limits reached by the element are the same. This objection natúrally leads to thé alternative suggestion to take the arithmetic mean of the 24 hourly ranges as the criterion. It is thus of interest to know whether the ratio borne by the daily range to the mean hourly range is highly variable or not. The more highly váriàble it it the less is the weight we should naturaliy attach to the main objection to hourly ranges, the great labour which their measurement entails. The extreme välues possible to the ratio are 24 and 1 , the former answering to the case when any sensible change of force is limited to a single hour of the dây, the latter to the case when every hour has the same maximum and minimum, and so a range equal to the rañge for the day: In the case of an absolutely quiet day, with a regular diurnál variatioin réprestented by a 24 -hour Fourier wave, the value of the ratio would be í2, ăd vallies lărget thâí these seem ünlikely to be encountered.

Therè is comparativèly little differeice between the mean values obtained for the ratio in Tables LXV and LXVI. If we take a mean from the four means for the same month, we obtain $5 \cdot 25$ for June and $\dot{5} \cdot 23$ for September; while if we take a
mean from the four means for the same station, we obtain $5: 13$ for Cape Denison and 5:35 for Cape Evans. V gives slightly the larger mean values for the ratio at both stations. Inspection of individual cases in Tables LXY and LXVI failing to show any marked influence of disturbance on the ratio, the days of the two months were divided into three groups, according as the daily character figure awarded at the station was 0,1 or 2 , and the following mean values of the ratio were found --

Character..

There would thus seem to be a slight rise in the ratio as disturbance increases, at least in the case of the horizontal components. On seven occasions; on June $1,9,20$ and 21, and September 18, 21 and 28, the maximum and minimum values of H for the day at Cape Denison occurred in the same hour. On June 9, in fact, they occurred within five minutes of one another. There was, however, nothing very outstanding in the values of the H ratio on those occasions, the mean of the seven values being 4.8 The extreme values of the ratio occurred on other days. They were at Cape Denison 8.5 and 3.1 for H , and 9.5 and 3.5 for V ; while at Cape Evans they were 8.4 and 3.0 for N^{1}, and $9 \cdot 8$ and 3.4 for V . Two of the four largest ratios occurred on days of character 1, and two of the four lowest ratios also occurred on days of character 1. Thus the character of the day is not much of a clue to the size of the ratio, at least in the Antarctic.

If we take the monthly means in Tables LXV and LXVI we see that on the average the largest hourly range is about thrice the mean hourly range for the day, rather more at Cape Denison, rather less at Cape Evans. In individual days, if we multiply the mean hourly range by 3 , we usually make a fair approach to the maximum hourly range. The extreme cases seem to be June 1 at Cape Denison when the largest H range is 7.9 times the mean range, and June 13.at Cape Evans when the largest N^{1} range is only 1.6 times the mean range.: This is practically what we should get in an absolutely quiet day with a regular diurnal variation given by a pure 24 -hour Fourier wave. Roughly speaking, in June and September, 1912, the largest hourly range bore to the mean hourly range in the average day a ratio about double what we should expect in the ideal quiet day with the 24 -hour wave largely dominant.
§ 25: Table L gives for each hour of the day the mean of the absolute hourly ranges from all available days of June and September, 1912; at the two Antarctic stations, and for comparison the (numerical) difference between the corresponding values in the mean diurnal inequality from all days. For example, 269y was the
arithmetic mean of the ranges between 0 h . and I . of H . at Cape Denison during June while $3 \cdot 6 \gamma$ was the difference between the figures at 1 h . and 0 h . in the diurnal inequality. The relatively small size of the latter quantity implies of course great diversity in the sign of the contribution made by different days of the month. The size of the absolute: range has obviously little to do with the size of the inequality change. Taking the mean of the values for the 24 hours we see that the ratio borme by the absolute hourly range to the inequality change varied at Cape Denison from $10 \cdot 2$ for H in June to $5 \cdot 1$ for V in September; while at. Cape Evans it varied only from 6.5 for N^{1} in June to 4.5 for V in June.

At stations as disturbed as Cape Denison and Cape Evans a number of months must be combined to give a smooth diurnal inequality, but the mean hourly ranges in Table $\cdot L$ show on the whole fairly regular diurnal variations, especially at Cape Denison: In June at Cape Denison both H and V ranges have their highest values in the early morning, but in both cases there is a conspicuous double oscillation, a second maximum appearing about 14 h . This is in accordance with what we should expect from the hourly character data, especially those for the incidence of 2 's in Table XLIX. In September at Cape Denison there is only a trace of a double daily oscillation, the ranges during the five hours ending at 4 h . being clearly the largest, and none of them either in H or V falling short of 50 . This again is fairly in accord with Tables XLVII to XLIX.

At Cape Evans in June the diurnal variation in Table L is not well marked; but in. September there is a well marked principal maximum before midnight G.M.T., and a somewhat inconspicuous secondary maximum about 12h. This again is fairly in accord with the results from the hourly character figures in Tables L to LII.

For comparison with Table LXVII the diurnal variation as derived from the squares of the hourly ranges is given in Tables LXVIII and LXIX for Cape Denison and Cape Evans. In each case two series of values are given. The first utilises all the hourly data available, the second omits the largest individual contribution to the hour in question. Supposing, for example, ranges available from thirty days, the entry in the first series represents the mean of the squares of thirty ranges, while the corresponding entry in the seoond series represents the mean of the squares of twenty-nine ranges, the range disregarded being the largest one irrespective of the day to which.it belonged. "The reason for giving the second series as well as the first lies in the extraordinary differences which the two series present in June. In. that month what the all-day data for Cape Denison suggest is a principal maximum in the early afternoon G.M.T., and a secondary maximum, of a much less conspicuous kind especially in H., in the early morning. But the extreme prominence of the early afternoon hours was due to a few short period disturbances; especially three occurring respectively on the 1st, 9th and 8th. These contributed much more to the sum of the squares of the hourly ranges for the hours
ending at 12 h .; 13h., and 14h. respectively than did the other twenty-nine days combined. The H. maximum and minimum for the day occurred within five minutees of one another in one of these occasions, and within fifteen minutes on a second occasion. The occurrence of an event of this kind in one hour rather than another may be a pure accident. If we had 100 years' data we should perhaps be able to form a judgment, but it is impossible to say a priori what is a normal distribution of exceptional incidents. throughout the day. In the present case the fact that only one such extreme incident occurred in a particular hour of the day rendered it possible to give an alternative picture, more representative perhaps of the average day, by omitting only one range for each hour; but during a disturbed year there might not unlikely be several such occurrences in some particular hours of the day.

The tendency in a single day to swamp the others for a whole month is of course more pronounced when we take the square than when we take the first power of a range, whether hourly or daily; but it is perhaps needless to say that the pronounced maximum in the early afternoon hours in the H. figures for June at Cape Denison in Table LXVII was also largely due to the few outstanding hourly ranges just referred to.

In September, which was on the whole a much more disturbed month than June, there was only one hour, viz., 12h. at Cape Denison in which a single range was very dominant.

The second series of figures in Table LXVIII, both in June and September, indicate a diurnal variation with maxima and minima closely corresponding in time with those shown by the first power ranges in Table IXVIII. But the diurnal variation is more emphasised in Table LXVIII than in Table LXVII.

There is less difference between the two series of results for Cape Evans in Table LXIX. Still some of the hourly data are much affected, e.g., the N^{1} results for 15h. in June and the V. results for 3 h . in June. The diurnal variation shown by either series of June figures appears somewhat irregular, but for September we get from either series a well. marked diurnal variation with a principal maximum occurring prior to midnight G.M.T.

Tables LXVII to LXIX should help to explain the uncertainties that attend estimates of the diurnal or annual variation of magnetic disturbance. In a echeme dependent on magnetic characters $0,1,2$, the most disturbed of days or hours contributes to any statistical sum or more than twice as much as the moderately disturbed day hour. The frequency of disturbance rather than its magnitude is the thing that counts. When we take for our criterion of disturbance the first power. of the range one day or hour of a first order magnetic storm may count as much as ten days or hours of minor disturbance, and when we take the second power one outstanding day or hour may count as much as 100 days or hours of moderate disturbance. In the
latter case one outstanding disturbance may completely alter the diurnal variation based on the results of a single month. This may seem to some people a conclusive argument gainst the use of the square of an hourly or daily range as anterion of disturbance But there is no a priori reason why the contribution of a single day or hour should not equal the contribution of 100 or 1,000 average days or hours. Such is certainly the case sometimes in seismology Until disturbance has been defined in such a way that an exact numerical measure is forthcoming, we cannot pass a final judgment as to what is the best criterion:

It is, :however, fairly obvious that diumal variations of disturbance based 9 on only one or 'two years' observations áre less likely to differ markedly from idiurnal variations based on a long series of years when the criterion adopted follows a scale $0,1,2$ than when it is the first or still more the second power of the hourly range.

TABLE XLV:-Daily and Mean of Hourly Characters at Cape Denison.

Table XLVI-Least and Greatest Values of Mean Hourly Character for Days of Daily Characters 0, 1 and 2.

	Mean Hourly Character									1913.						
$\begin{gathered} \text { Daily } \\ \text { Character. } \end{gathered}$								October	November.	January.	February.	March.	April:-	May.		July.
0	Least value	$\begin{aligned} & 0.4 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.2	$0 \cdot 3$	0.3	0.7	$0.8 *$	\therefore	0.5	0.5	${ }^{\circ} 0.3$	0.1	0.1	0.2
	Greatest value ...				$0 \cdot 6$	0.5	$0 \cdot 6$	1.0	0.8	1.0	0.9	- 0.8	0.5	0.5	0.7
1					0.5			:							\cdots	
	Least value ...	0.5	0.7	0.51.4		0.41.1	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	0.61.3	0.81.5	0.6	0.8	0.6	0.6	- 0.4	0.2	0.4
	Greatest value 1.2	1.5		1.3					$1 \cdot 3$	1.5	1.2	1.4	0.9	$1 \cdot 1$	1:1
2	-Least value Greatest value	0.81.7	1.31.7	1.01.8	1.12.0	0.71.5	0.81.5	1.01.9	1.1.	1.21.8						
											1.1	1.1 1.7	1.1 1.7	1.2 1.7	1.1	

Table XIVVII-Cape Denison Mean Hourly Character Figures.

Hour G.m.T.ending at	1h.	2h.	3h..	4 h.	5h.	h.	7 h.	8h.	9 h.	10h.	11h.	2h:	13h.	14h.	15h.	16h.	17h.	18h.	19h.	20h.	21 h.	22h.	23h.	24	Mean
$\begin{array}{r} 1912 . \\ \text { April...... } \end{array}$	$1 \cdot 47$	1.55	1.55	1.52	1.29	1.21	0.86	0.81	0.52	0.72	0.80	0.80	0.97	0.90	$0 \cdot 60$	$0 \cdot 47$	$0 \cdot 63$	0.83	0.90	0.97		1.20		7	. 01
May .	1.26	1.45	1.52	1.39	1.23	$1 \cdot 10$	0.81	0.71	0.57	0.43	0.58	0.68	0.81	0.81	0.94	0.77	0.68	0.63	0.90	0.87	1.13	1.23	1.23	1.29	0.96
June	1.20	$1 \cdot 40$	1.30	$1 \cdot 40$	1.20	1.23	0.90	0.87	0.59	0.72	0.73	0.87	1.03	$1 \cdot 10$	1.17	1.00	0.67	0.72	$0 \cdot 86$	1.07	1-10	$1 \cdot 20$	1.33	$1-20$	1.04
July	$1 \cdot 10$	1.39	1.29	1-26	$1 \cdot 10$	0.84	0.55	$0 \cdot 45$	0.43	0.53	0.55	0.58	0.77	0.81	0.77	0.68	0.74	0.67	0.74	0.74	0.77	0.97	1.03	1.06	0.83 .
August	1.29	1.32	1.29	1.26	1.39	1-13	0.77	0.65	0.55	$0 \cdot 48$	0.35	0.39	$0 \cdot 48$	0.48	0.58	0.48	0.42	$0 \cdot 40$	0.57	0.65	0.77	0.97	$1 \cdot 13$	1-26	0.80
-September	1.50	$1 \cdot 47$	1.47	1.43	$1 \cdot 20$	1:00	0.70	0.62	0.59	0.31	0.53	0.63	0.53	$0 \cdot 43$	0.2	0.33	0.23	0.41	0.38	0.57	0.80	1-17	1.23	$1 \cdot 30$	0.80
- October	1.90	1:84	1.87	1.81	1.48	1.39	0.90	0.90	0.80	0.63	0.74	0:77	0.77	0.77	0.65	0.61	0.68	0.57	0.97	1.06	1.29	1.52	1.52	1.81	1-14
November 1913.	1.90	1.87	1.93	1.87	1.60	1.57	1.20	1.00	1.00	0.90	0.63	0.73	0.77	0.87	0.67	0.73	0.80	0.93	1-14	1.37	$1 \cdot 43$	1.80	1.70	1.77	1.26
January	1.86	1.79	1.82	-89	67	1.52	$1 \cdot 30$	1-11	0.96	1.0	0.89	0.85	0.89	1.00	1.07	0.89	1.00	1.04	1.11	1.23	1.50	1.57	1.70	1.90	1.32
February	1.71	1.75	1.75	1.71	1.57	1.43	$1-25$	0.96	0.82	0.75	$0 \cdot 64$	0.61	0.71	0.82	0.82	0.79	0.79	0.75	0.79	0.96	1.18	1.43	1:61	1.64	-1.14
March	1.45	1.55	1.55	1.52	52	$1 \cdot 13$	0.97	0.81	0.58	0.70	0.55	0.5.)	0.68	0.81	$0 \cdot 6$	0.61	0.77	0.65	0.71	0.97	1.06	1.23	1.39	1.4	0.99
April.	1.27	1.50	1.47	1.47	1.37	1.00	0.97	0.60	0.37	0.47	0.43	0.43	0.67	0.87	0.93	0.57	0.53	0.63	0.73	0.70	0.83	$1 \cdot 10$	$1 \cdot 17$	1.37	0.89
May	0.79	1.03	1:00	70	0.83	$0 \cdot 47$	0.27	0.27	0.33	0-40	0.47	$0 \cdot 40$	0-57	$0 \cdot 60$	0.43	0.30	0.23	0.30	0.30	0.50	0.67	0.63	0.8	0.87	0.55
June	0.57	0.77	0: 30	0.73	0.70	0.47	$0 \cdot 43$	$0 \cdot 30$	0.20	0.30	0.40	0.33	$0 \cdot 43$	0.57	0.50	$0 \cdot 30$	0.23	0.20	0.30	0.53	0.53	0.70	$0 \cdot 73$	0.60	0.48
July	0.87	1.00	0.87	1.00	0.81	0.61	0.42	0.26	0.32	$0 \cdot 42$	$0 \cdot 39$	$0 \cdot 23$	$0 \cdot 42$	$0 \cdot 68$	0.55	0.52	$0 \cdot 45$	0.52	0.48	0.52	0.61	0.74	0.81	0.84	$0 \cdot 60$
Means from all 15 months	1.34	1.44	$1 \cdot 43$	140	1.26	1.07 .	0.82	0.69	0.58	0.59	0.58	0.59	0.70	0.77	0.70	$0 \cdot 60$	0.59	0.62	0.73	0.85	0.98	$1 \cdot 16$	1.25	1.32	0.92
April-October, 1912	1.39	$1 \cdot 49$	$1 \cdot 47$	$1 \cdot 44$	$1 \cdot 27$	1-13	0.78	0.73	0.58	0.55	0.61	0.69	0.77	0.76	0.71	0.62	0.58	0.60	0.76	0.85	0.98	1-18	1:25	1.3	0.94
7 Winter months	1.02	1.19	$1 \cdot 15$	I-11	1.04	0.84	0.59	0.50	0.43	$0 \cdot 47$	0.50	0.50	0.64	0.72	0.71	0.58	0.49	0.49	0.59	0.70	$0 \cdot 80$	0.92	1.02	1.02	0.75
5 Equinoctial months	.1.52	1.58	1.58	1:55	1.37	1.15	0.88	0.75	0.57	0.57	0.61	0.64	0.72	0.76	0.61	0.52	0.57	0.62	0.74	0.85	0.99	1.24	1.32	1.48	0.97
3 Summer months	1.82	1.80	1.83	1.82	1.61	1.51	1-25	1.02	0.93	0.91	0.72	0.73	0.79	0.90	0.85	0.80	0.86	0.91	1.01	1.19	1.37	$1 \cdot 60$	$1 \cdot 67$	1.77	1.24

TABLE ;XLIX:-Cape Denison: Hourly Characters; Number of 2's;

1912.

Table L.-Cape Evans. Mean Hourly Character Figures.

1912.

Table LI.-Cape Evans. Hourly Characters. Number of'0's.

'Hour G:M.	ing at	1b.	2h.	3h.	4 h .	5h.	6 h .	7 h .	8 h .	9 h.	10h.	11h.	12 h.	13h.	14.	${ }^{15} \mathrm{~h}$.	16h.		.	-19h.	20h.	"21h.	2	-23h.	h.	Total.
April		4	8	8	11	16	15	12	14	12	10	14	9	11	10	12	10	12.	10	${ }^{\cdot} 6$	3	- 9	6	4	4	'230
Mä		11	11	12	14	11	13	14	14	13	13	18	13	12	${ }^{1} 14$	11	'i0	8	'9	9	10	6	9	14	12	'281
June		14	10	12	13	14	11	$\dot{8}$	8	9	12	10	12	14	10	'10	11	14	12	-10'	8	4	7	9	11	253
July		13	9	11	12	11	12	11	10	13	16	14	14	14	12	'10.	8	9 !	'10.	8	9	9	9	16	13	273
Auguist ...		4	7	6	6	5	7	10	12	12	15	14.	15	11.	$12!$	11	11.	10	8.	- 6	5	4	2	4	6	203
September	\cdots	- 4	5	7	6	6	8	9	9	8	13	12	11	10	10	7	'9:	'10'.	8	4	2	2	2.	1	0	163
October	\ldots	0	3	1	'3	3	3	8	5	9	10	10	8	5	6	5	- 3	2	2	0	1	${ }^{\circ} 0$	0	1	1	89
Süm		50	53	57	65.	66	69	72	72	76	89	92	82	77	74.	'66	-62	65	'59	43.	'38'	34	351	49 !	47	1,492
Porcentages	\because	$\bigcirc 80$	85	92	1105	106	'111	116.	.116	122	, 143	'148	132	124	119	1106	100	105	95	69	61	55	-'56\%'	79	75	

TABLE Lİ - Cape Evans. Hounly Characters. Number of 2's.																											
Hour G.y	din		1h.	${ }_{\text {2 }}^{2 \mathrm{~h}}$.	3h.	4 th .	5 h.	- 6h.	7 h.	8 h .	9h.	10h:	11h.	12h.	13h.	14h:	15h:	16h:'	17h.	18h!	19h.	20h.	21h.	22h.	23h.	24b.	'rotal.
April	\cdots		5	5	6	6	5	4	3	1	3	7.	6	4	4	3 !	1.	2	1	3	5	2	1	6	4	4	. 94
May	4	6	5	2	1	4	4	5	5	4	3	3	5	3	3 :	3	1	2	2	5	1 :	4	4	4	83
June	4	2	3	5	3	7	2	4	2	5	3	4	4	3	3	3	1	1	0	2	4	4	4	4	77
July	\cdot	2	3	1	1	2	:3	2	2	2	1	-1	-	3	4	4	i	i	0	3	0	1	1	3	2	44
August	3	4	4	3	2	2	1 t	3	2	2	3	2	1	1	2	5	3	1	2	2	3	5	4	4	64
September	...		2	5	4	3	3	2	3	3	2	4	4	5	2	3	3	2	1	3	3	10	9	10	11	11	108
October	9	4	4	2	3	2	0	0	1	3	2	2	3	6	3	3.	2	5	8	11	8	11	10.	7	109
Sum			29	29	27	22	-19	24	15	18	17	26	22	21.	22	23	19	19	10	15	23	32	30	41	40	36	579
Percentages	...	\because.	120	120	112	91	79	100.	62	75	71	108	91	87	91	95	79	79	41	62	95	133.	124	170	166	149

Table LIII.-Eskdalemuir. Meean Hourly Character Figures.

Table LIV.--Eskdalemuir. Hourly Characters. Number of 0's.

Hour G.M.T. ending at	1h.	2 h .	3h.	4h.	5h.	6 h .	7 h .	8h.	9h.	10h.	'1in.	12 h .	13h.	14h.	15h.	16h.	17h.	18b.	19h.	20h.	21h.	22h.	23h.	24h.	Total,
1912.																									
Aprii ...	18	16	19	17	20.	23	20	21.	21	19	13	12	11	10	10	7	10	8	9	9	10	13	11	13	340
May ...	15	16	19	23	23	20	20	17	23	23	17	14	8	9	6	6	8	5	4	11	9	14	16	13	339
June	17	17	18	18	19	17	16	14	20	21	18	17	12.	9	6	5	7	8	5	11	9	14	14	11	323
July	16	15	16	22	20	19	20	15	22	20	- 19	18	10	12	8	6	6	11	10	11	15.	12	17	16	362
August	12	12	18	14	15	17	12	13	16	21	16	14	15	10	11	4	8	6	3		12	9	8	13	288
September	9	14	15	19	15	19	14	15	$\cdot 16$	21	15	10°	14	10	14	9	12	15	15	15.	15	10	12	8	331
October ...	13	12	16	18	18	16	21	13	17	22	15	11	13	11	16	15	14	14	15	16	13	12	16	17	362
November 1013 \quad... ...	14	16	16	16	16	20	17	17	21	19	15	14	13	15	14	17	17	18	20	13	11	13	12	14	378
January	13	18	20	17	21	23	26	22	22	22	19	15	13	18	16	13	15	12	12	15	17	15	19	15	418
February ...	8	14	17	18	15	18	17	17	15	15	10	12	10	14	12.	13	12	14	15	10	11	8	10	10	315
March ...	14	14	16	16	14	18	18	18	17	18	16.	9	7	7	11	13	12	12	13	11	13	10	11	11	319
April	11	12	12	13	15	13	15	15	17	17	19	11	9	14	11	11	10	11	13	14	11	12	8	8	302
May ...	16	17	19	15	19	18	19	21	21	23	20	11	12	11	9	11	12	9	11	10	14	18	18	11	365
June -..	18	19	17	25	26	20	18	18	21	23	18	. 17	14	12	9	14	10	9	15	18	16	17	19	22	415
July ...	15	17	21	23	22	22	19	24	22	22	21	16	14	16	11	10	10	12	14	14	18	20	17	14	414
$\therefore \mathrm{\therefore}$																									
Süm ,..	209	229	259	272	284	283	272	260	291	306	251	201	175	178	164.	154	163	164	174	187.	194	197	208	196	5271
Percentage from all 15																									
months	95	104	118	124	129	129	124	118	133	139	114	92	80	81	75	70	74	75	79	85	88	90	95	89	-.
7 Summer months $\quad \because .$.	104	108	123	134	144	128	118	116	139	146	124	103	82	76	57	54	58	57	59	81	89	100	104	96	...
5 Equinoctial months	94	99	113	118	119	129	128	119	128	141	113	77	78	75	'90	80	84	87	94	94	90	83	84	83	\cdots
3 Winter months $\cdot .$.	76	104	114	110	112	132	130	121	125	121	95	89	: 78	101	91	93	95	95	101	82	84	78	89	84	\cdots

TABLE LV.-Eskdalemuir. Hourly Characters. Number of 2 st

Table LVI.-Hourly Characters at Cape Denison and Cape Evans. Occurrences,

1912.

 $\begin{array}{ll}0 & \\ 4 & 1 \\ 4 & 1 \\ 4 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 10 \\ 1 & 1 \\ 1 & \\ 2 & \\ 2 & \end{array}$

.

Table LVI.-Continued.

Table LVI.-Continued.

Table LVII:-Hourly Characters at Cape Denison and Eskdalemuir. Occurrences.

\ddagger 2032-L

Table LVII.-Continued.

	. . . 10 h. . .									11 h.									12 h.								
- Cape Dentson ...	0			1			2			0 :			- 1.			2			0 .			1 '			2		
Eskdalemulr \quad...	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2.

Table LVII.--Continued.

		- 19 h.								20 h .											21 h .								
Cape Denison	\bigcirc			1			2			0				1			${ }^{2}$				0			$1 \times$			2		
Eskdalemuir	0	1	21	0	1	2	0	1	2			1	2			1	2	0	1	2	0	1	2	0	1	2	0	1	${ }^{2}$.
$\begin{array}{r} 1913 \\ \text { January } \end{array}$	2	0	0	6	14	1	2	3	0			0	0		2. 18		1	1	7		0		0	10	4	1	5		4
February	6	1	0	9	10	1	0	1	0		4	0	. 0				1	0	2	1	3	0	0	. 7	8	2	1	3	4
March ...	9	1.	1	4	13	1	0	1	1	2	2	2	0	10	12		2	0	0	3	2	0	0	11	13	$1 .$	1	0	3
April	8	2	0	5	12	1	0	0	2			0	0		5.13		1	0	0	1	5	2	0	7	10	4	0	1	1
May ...	11	11	0	0	6	1	0	1	0		9	8	0			9	1	0	1	1	10	3		3	10	1	0	2	1
Juñe -...	. 14	6	1	1	6.	2	0	0	0	13		1	0		510	10	1	0	. 0	0	11	3		5	8	3	0	0	0
July ...	10	7	0.	4	7	2	0	1	0	10		6	0		519	9	2	0		0	10	3	0	8	8	1	0	1	0

	22 h .									23 h .											24 h.										
Cape Denison	0			1			2			0				1			2.				0				1.			2			
Eskdalemuir	0^{*}	1	2	0	1	2	0.	1	2				$\stackrel{1}{2}$		1	2	0		1	2	0		1	2	0	1		0	1		
$\begin{array}{r} 1913 . \\ \text { Jänuary } . \end{array}$	$\therefore 0$	0	0	8	5	0		7	3				$\left\lvert\, \begin{aligned} & 1 \\ & 0\end{aligned}\right.$		0	0			11	1	0		0	0		2			11		
Fobruary	.. 0	0	0	7.	9	0	1	8	3			0	0	7	4.	0		3	11	3	0		0	0	5	4	1	5	11		
March 0	0	0	11	10^{\prime}	3	0	6	'1	0		0	0		7	2		2	7	3	1		0	0	10	5	0	0	10		
April, 1	0	0	12	12	1	0	1	3	0		0	0	9	13	1		0	3	3	0	,	0	0	7	10	. 1	2.	5		
May 13	2	0	4	7	0	0	3	${ }^{1} 1$	5	5	2	0	12	8	0		0	2	1	4		2	0	7	14	1	0	0		
June .	. 8	2	0	9	6	4	0	0				0	0	10	8	2		0	0	-	12		1	O.	10	6	0	0	- 1		
July 7	2		13	7	1	0	1	10			1.	10	12	12	1		0	0	0	4	4	1	0	10	15	1	0	0		

Table LVIII.-Hourly Characters at Cape Denison and Cape Evans.

Table_LIX.-Hourly' Characters at Cape Denison and Eskdalemuir.

Table LX.-Hourly Characters at Cape Evans and Cape Denison.

Number of Cccurrences.										Occurrences as Tercentages.								
Cape Evans Character.		0			1			2			0			1		\cdots		
Cape Denison Character.	0	1	2	0	1	2	0	1	2	0	1	2	0	1	. 2.	0	1	2
24 hours	935	686	32	517	1,635	682	10	211	544	57	41	2	18	58	24	1	28	$7{ }^{\prime}$
Hours - 1-6	61	313	25	8	336	390	0	14	171	15	79	6	1	46	53	0	8	02
Hours 16-21	264	60	2	236	454	91	6	86	104	81	18	1	30	58	12	3	44	53

Tábie LXI.--Hourly Characters at Eskdalemuir and Cape Denison.

Table LXII.-Ranges during Hours when Character 0 at Cape Denison, but 2 at Cape Evans.

Tabie LXIII.-Ranges during Hours when Character 2 at Cape Denison, but 0 at Cape Evans.

Table LXIV.-Ranges during Hours when Character 0 at Cape Denison but 2 at Eskdalemuir.

	Hour ending at -	Cape Denison.			Eskdalemuir.	
		D.	H. '	v.	N.	W.
1913.	h.	γ	γ	γ	γ	γ
- March 21	19.	58	5	19	10	37.
April 14	18°	23 *	12	11	35.	15
May 18 '...	16	6	7 V	8	32	19
June 21.	18	9	7	8	37	17
June 24. "...	17	. 4.	6	6	23.	11
Junc 28.	19	18	8	8	42	18
June 29.. ... ${ }^{\text {a }}$	16	14	7	10	19	12
July 24	16	5	6	7	25	11
Mean3...	\cdots	15	7	10	28	18

Table LXVVMourly Rainge Data at Cápe Denison and Cape Evans, Jüne, 1912.

Table LXVI-Hourly Range Data at Cape Denison and Cape Evans; September, 19i2:

	. . Cape Dénisòn.						Cape Evàns.					
			Dälly: Hörly.				Ĥourly Mänge.		$\left\lvert\, \begin{gathered} \text { Dailiy. } \\ \text { Hơuily: } \\ \hdashline \cdots \end{gathered}\right.$	\qquad		Daliy:ifourly.\cdots
	Laitgest:	浐唁:					Laĭgest.	Meai.		Largest:	Meän:-	
1.	81	20.6	6.0	84	28.1	7.5	39	12.8	8.4	28	7.2	5. 6
2	46	17.5	$3 \cdot 1$	35	17.2	56	33	10.5	4.5	33	7.5	5.5
3	120	21.4	5.7	98	$19 \cdot 3$	$4 \cdot 4$	38	7.8	6.2	29	$5 \cdot 0$	¢ 888
4	73	29.8	$5 \cdot 3$	148	41.0	$5 \cdot 4$	82	27.6	7.2	24	11.7	: 5.6
5	60	21.8	4.0	74	30.0	$5 \cdot 4$	92	25.4	$\ddot{6} \cdot 1$	30	. 14.5	\% 5.3
6	108	30.0	$4 \cdot 6$	81	28.1	4.9	44	23.0	4:8	32	13.8	$5 \cdot 1$
7	60	20.0	$4 \cdot 1$	98	24.8	49	33	17.7	- 40	21	9.8	4.0
8 :	111	27.4	6.2	95	250	4.7	61	24.7	$4 \cdot 1$	33	13.3	$5 \cdot 3$
9 ...	103	32.2	$5 \cdot 2$	131	30.6	6.2	48	28.2	$5 \cdot 5$	20	11.0	4.5
$\because 10^{\prime}$. $:$.	78	26.0	6.2	96	26.0	$5 \cdot 4$: 43	22:4	5.3	27	10.7	$5 \cdot 9$
11 :	85	23.8	$7 \cdot 1$. 74	22.9	$\ddot{6} \cdot 6$	- 38	21:4	- $4: 3$	- 20	11.3	$5 \cdot 4$
12	71	29.2	$5 \cdot 1$	74	27.7	5.6	68	30.5	$5 \cdot 1$	45	16.1	$\dot{5} \cdot 2$
									\because			
13':	101	34.7.	48	47	334	6.4	$\because 53$	- $20: 8$		\square^{-66}	14:8	$6 \cdot 1$
14	95	27.2	$4 \cdot 3$	87	25.9	4.3	- - \% 51	- 25:2	- 4×4.0	430	15:7	$4 \cdot 3$
15	50	15.7	3.9	37	12.3	$5 \cdot 8$	27	$9 \cdot 2$	$5 \cdot 5$	17	$5 \cdot 0$	-6.0
16	56	23.0	$5 \cdot 4$	63	$22 \cdot 2$: 5.9	38	16.7	- 6.5	- 17	8.4	6.7
17	117	47.5	$4 \cdot 5$	122	$45 \cdot 2$. 3.5	150	476	5.5	$\because 64$	23.3	$5 \cdot 1$
18	175	$62 \cdot 2$	$3 \cdot 5$	226	53.1	6.2	123	46.8	$\dot{5} \cdot 6$	48	23.8	3.9
10 : ..:	77	31.9	4.8	93	38.4	48	64	27.5	$\stackrel{5}{5} \cdot 2$	60	$15 \cdot 4$	$4 \cdot 5$
20	134	306	$4 \cdot 4$	61	$\ddot{30.3}$	4.8	60	28:8	5.5	27	14.2	- $5 \cdot 1$
21	167	$34 \cdot 1$	$5 \cdot 0$	64	31.5	5.5	48	24.7	$4 \cdot 0^{\circ}$	51	13.9	5.8
22 : 2	116	- 45.8	$\dot{5} \cdot 6$. 148	51.6	$5 \cdot 1$	58	26.5	$4 \cdot 6$	55	18.3	. 6.0 .
23	168	$42 \cdot 8$	$4 \cdot 5$	185	51.3	3.8	65	28.8	- $4 \cdot 2$	44	18.3	$3 \cdot 4$
24	176	50.0	6.8	112	54.7	6.4	165	61.4	5.7	63	30.0	7\%4
25	168	34.4	5.8	142	34-2	$3 \cdot 9$	55	19.2	$5 \cdot 1$	61	134	: 6.0
26	116	34.6	4.7	101	$\overleftrightarrow{36} 7$	3:8	48	22.4	3.3	48	15.8	$\therefore 3.9$
27	62	22.7	$3 \cdot 3$	59	$24 \cdot 1$	$3 \cdot 7$	33	150	5.3 .	17	7.6	7.1
28 . :.:	67	17.8	$4 \cdot 2$	57	22.5	5.1	33	$10 \cdot 4$	4.0	46	7.7	$\therefore 6.8$
29	60	19.9	$4 \cdot 4$	63	22.0	3.7	33	13.6	4.7	30	10.0	6.5
30 ...	101	27.4	6.1	104	29.2	7.3	55	18:1	$\ddot{6} \cdot 1$	85	10.7	7.1
'Mêañ ...	$100 \cdot 1$	$30 \cdot 1$	5.0	96.6	-31.2	- $5: 2$	59.3	23.8	$0 \cdot 1$		-19.2	5.6
1												

\ddagger 2032-M

Table LXVII.-Hourly Range and Inequality Change at Cape Denison and Cape Evans.

Hoir (G.M.T.) ending at-	Mean Hourly Ranige.								Hourly Change in Diurnal Inequality.							
	. Cape Denison.				Cape Evans.				Cape Penison.				Cape levans.			
	June.		September.		Junc.		September.		June.		September.		Junc.		Septemter.	
	II	v	II		N^{1}	v	N^{1}	v	II	v	H	v	N^{1}	v	N^{1}	v
- .																:
h.	γ	γ	γ	γ	γ.	γ	γ	γ	γ	γ	γ	γ	γ	γ	γ	γ
1	26.9	27.8	54.9	$62 \cdot 2$	20.5	7:7	28.8	15.6	$3 \cdot 6$	$2 \cdot 0$	$12 \cdot 8$	145	$1 \cdot 4$	0.1	$0 \cdot 1$	2.1
2	31.8	45.2	55.1	62.4	23.2	$9 \cdot 4$	$29 \cdot 3$	-12:0	3.8	4.8	$10 \cdot 1$	13.9	$3 \cdot 6$	$2 \cdot 6$	$4 \cdot 4$	1.8
3	$32 \cdot 6$	$51 \cdot 3$	$57 \cdot 6$	50.0	24.4	$13 \cdot 3$	25.6	11.6	2.2	0.7	8.4	11.2	1.8	$4 \cdot 3$	1.6	2.4
4	36.1	$44 \cdot 0$	57.8	50.1	24.8	- $12 \cdot 3$	$27 \cdot 9$	11.6	$0 \cdot 6$	$1 \cdot 1$	$4 \cdot 4$	$5 \cdot 5$	$1 \cdot 1$	$2 \cdot 2$	$4 \cdot 3$	$5 \cdot 2$
5	$32 \cdot 1$	30.6	47.2	38.8	-20.8	11.3	23.3	' 10.7	1:1	$0 \cdot 4$	5.9	$2 \cdot 4$	$3 \cdot 6$	4.4	8.4	$2 \cdot 1$
6	28.9	$25 \cdot 3$	36.1	27.7	$20 \cdot 8$	$14 \cdot 1$	20.0	$9 \cdot 6$	1.8	$3 \cdot 3$	$2 \cdot 0$	12.0	$4 \cdot 1$	$3 \cdot 4$	11.0	$5 \cdot 2$
7	$22 \cdot 3$	20.6	26.7	22.6	19•1	12.0	15.5	$9 \cdot 2$	1.5	$3 \cdot 3$	2.8	$5 \cdot 0$	$5 \cdot 5$	$5 \cdot 4$	$7 \cdot 2$	52
8	$21.9{ }^{\circ}$	18.6	- $20 \cdot 3$	22.5	23.0	18.2	$18 \cdot 4$. $9 \cdot 1$	2.5	4.4	$5 \cdot 2$	12.8	$5 \cdot 1$	2.0	$9 \cdot 4$	$3 \cdot 9$
9	14.3	13.2	. 16.0	20.7	17.7	15:2	20.3	$9 \cdot 6$	$1 \cdot 6$	$1 \cdot 1$	$5 \cdot 4$	$4 \cdot 4$	6.0	$4 \cdot 2$	7.0	$3 \cdot 9$
10	17.2	18.8	$14 \cdot 5$	16.7	$19 \cdot 0$	12.2	$20 \cdot 4$	$9 \cdot 2$	$4 \cdot 3$	4:5	$3 \cdot 9$	$4 \cdot 4$	$2 \cdot 3$	1.2	$4 \cdot 0$	2.3
11	18.2.	$19 \cdot 7$	${ }^{18} 8$	20.4	18.0	14.4	21:8	8.2	$5 \cdot 6$	6.0	$8 \cdot 4$	$4 \cdot 4$	$5 \cdot 6$	4.8	$5 \cdot 3$	0.7
12	-29.9	33.0	-25.0	30.8	$19 \cdot 2$	8.8	24.5	$10 \cdot 8$	4.0	$10 \cdot 3$	$2 \cdot 2$	6.0	1.8	$2 \cdot 3$	$0 \cdot 1$	0.2
13	33.2	41.2	$16 \cdot 5$	21.8	22-1	10.3	21.2	$10 \cdot 1$	4.4	$3 \cdot 9$	$3 \cdot 3$	$5 \cdot 9$	$0 \cdot 6$	0.5	5.7	$2 \cdot 1$
14	33.2	44-1	13.6	18.5	$22 \cdot 4$	13-1	17.8	11.4	0.8	$5 \cdot 4$	$0 \cdot 2$	1.9	0.7	$2 \cdot 4$	$2 \cdot 6$	$2 \cdot 3$
15	28.8	41.4	$12 \cdot 4$	15.8	23:0	$15 \cdot 1$:	21.7	$12 \cdot 1$	1.0	$2 \cdot 2$	$2 \cdot 6$	$1 \cdot 3$	3.0	$0 \cdot 1$	$0 \cdot 3$	1.7
16	27.8	38.6	13.8	15.8	$22 \cdot 3$	13.2	$22 \cdot 9$	11.4	. 1.6	7.7	$0 \cdot 3$	1.2	3.9	5.5	$2 \cdot 9$	$3 \cdot 4$
17	11.9	17.4	11.0	14.9	18.2	12.0 :	$20 \cdot 9$	8.9	$2 \cdot 6$	$7 \cdot 1$	$0 \cdot 3$	$0 \cdot 9$	1.3	$5 \cdot 2$	2.0	1.6
18	$13 \cdot 8$	19.2	13.9	19.6	20.5	$9 \cdot 7$	23.7	10.8	0.4	$0 \cdot 3$	$0 \cdot 9$	$2 \cdot 6$	2.0	1.8	0.5	1.3
19	13.8	$23 \cdot 1$	$17 \cdot 4$	$20 \cdot 7$	$17 \cdot 4$	$8 \cdot 6$	21.1	- 13.5	0.5	4.9	1.0	3.3	$1 \cdot 6$	1.6	4.5	2.9
20	$15 \cdot 9$	$25 \cdot 4$	22.7	23.2	14.0	$9 \cdot 3$	$24 \cdot 8$	20.0	$0 \cdot 4$	$2 \cdot 8$	1.6	1.8	${ }^{5} 5 \cdot 9$	2.8	$7 \cdot 6$	0.1
21	21.9	24.9	$29 \cdot 4$	33.6	16.3	$10 \cdot 8$	$25 \cdot 4$	24.0	$2 \cdot 4$	$5 \cdot 1$	$3 \cdot 4$	7.9	2.0	1.3	8.0	2.2
22	26.2	24.2	38.8	$41 \cdot 7$	$19 \cdot 2$	12.7	26.8	24.6	$0 \cdot 3$	1.4	1.5	$5 \cdot 9$	$1 \cdot 2$	1.9	$2 \cdot 4$	9.0
23	27.0	. $31 \cdot 3$	$45 \cdot 1$	$47 \cdot 5$	22.1	11.7	$35 \cdot 2$	$23 \cdot 8$	$3 \cdot 4$	13.8	$0 \cdot 9$	$10 \cdot 1$	$4 \cdot 6$	2.3	$9 \cdot 4$	2.6
24	$27 \cdot 1$	$27 \cdot 1$	57.8	51.1	$22 \cdot 6$	$9 \cdot 9$	34.6	$20 \cdot 3$	7.8	$9 \cdot 3$	$10 \cdot 3$	6.3	6.9	0.5	1.3	14
Mean	24.7	$29 \cdot 3$	30.1	$31 \cdot 2$	$20 \cdot 4$	11.8	$23 \cdot 8$	$13 \cdot 3$	2.4	$4 \cdot 4$	$4 \cdot 1$	$6 \cdot 1$	8.2	$2 \cdot 6$	$5 \cdot 0$	2.7
Hourly Range \qquad Inequality Change.	$10 \cdot 2$	$6 \cdot 7$	$7 \cdot 4$	$5 \cdot 1$. 6.5	$4 \cdot 5$	4.8	$4 \cdot 9$					1			
														-		

Table LXVIII-Diurnal Variation from Squares of Hourly Ranges at Cape Denison.

TABLE LXIX:-Diurnal Variation from Squares of Hourly Ranges at Cape Evang,

ITour (G.M.T.) cnding at	A!! Data a avallable.				One Hourly Value omltted.			
	June:		September;		June:		September:	
	N!	y	$N_{1}^{1} \cdot$	\cdots	N^{1}	V .		y.
-	642	73	.1,117	311	523	67	876	275
- 2	- 924	. 117	1,092	193	665	105	1,001	- 169
- ${ }^{3}$	1,395	825	807.	160°	613	175	690	148
! 4	194	365	1,470	238	,024	246	796	122
	763	273	760	148	- 566	200	656	132
6	680	420	496	140	593	327	455	109
7	- 585	280	350	56	460	182	275	
8	1,093	1,283	522	170	755	503	395	97
9	580	614	661	154	431	327	538	95
10	0	358	887	44	472.	211	453	113.
- 11	2	260	931	140	359	173	714	72
12	639	132	1,204	261	481	90	873	133
- 13	947	188	1,028	185	715	137	542	133^{\prime}
	. 1,013	- 301	1 $\square \quad 510$	1 189	- 5	195	373	166
$\therefore 10^{24}$	- $1,657^{-}$. 5665	- $\quad 943$	1 231	367	235	487	146
: 16	,	378	1 1,229	$\therefore 230$	646	250	495	162
$\square_{17}{ }^{17}$	$\therefore 502$	- 294	$1 \quad 680$	- 09	- 435	167	505	90
$\because 18$.	- 644	$\cdot 132$	- 848	'161	556	115	678	142
$: \quad 19$	-			${ }^{274}$	4	83	13.	227
- 20	- 297	128	1,041	- 637	243	89	699	541
$\bigcirc 21$	- $\cdot 416$	144	1,085	- 878	388	127	- 722	781
- 22	$\underline{601}$	216	1,056	877	40	187	771	753
$\therefore 23$	725	217	1,951	- 737	565	142	1,243 ${ }^{\text {a }}$	617
$\bigcirc 24$	${ }^{7} 72$	131	1,979.	500	618	-113	1,108	465

CHAPTER IV.-AURORA AND MAGNETIC DISTURBANCE.

§ 26. The relation of magnetic disturbance to aurora has long been a subject of interest; and that interest has increased with the development of wireless and the advance of theories which suggest that a conducting layer in the upper atmosphere plays an important part in geophysics. A consideration which should be borne in mind is that ordinary magnetographs are not capable of showing changes of forice of very short period. An ordinary magnetograph can show oscillations of force of considerable size if the period is a minute or more, but when the period is much reduced, the spot of light being of finite width, the successive to and from movements are not separated, and the result is a blur. Large irregular changes of force such as those produced by neighbouring electric railways set the magnets of an ordinary magnetograph swinging in their own period. To show changes of force which occupy only a fraction of a second or a few seconds calls for a different type of instrument, differently damped, and with a more open time scale. Now auroral displays when brilliant are usually by no means static phenomena, so far as the eye can judge. When we have in Sir Douglas Mawson's words " a vortex of colour and motion ", crossing the zenith, changes are presumably in progress in the electromagnetie field which an ordinary magnetograph can show only very imperfectly, if at all. The eye itself is a very imperfect instrument for observing phenomena of very short duration, and there may be auroral phenomena, the true sequence of which the unaided eye is quite inadequate to disclose. When comparing visual auroral phenomena and corresponding magnetic records we are thus dealing with two sources of information both of which are necess sarily imperfect.

A further complication is that the visibility of aurora is largely determined by conditions which vary immensèly from one occasion to another. Cloud, twilight and moonlight are all obstacles. The impression of brightness or faintness which an auroral display makes on the observer is largely a matter of contrast. The intelligent observer, no doubt, realises at the time that an aurora which he sees in twilight or bright moonlight must be of considerable natural brilliancy, and this probably influences his descriptive language. İt is impossible for a stranger to make full allowance for the personal element in drawing conclusions from the language employed. But some kind of a scale of intensity seemed essential if any but the most superficial conclusions were to be drawn. Accordingly I went carefully through Sir Douglas Mawson's descriptions and assigned characters $0,0.5,1,1.5$ and 2, intended to represent gradations from a total absence of aurora to the most brilliant. The time employed in Sir Douglas' auroral records at Cape Denison is the local time, 9 h .31 m . fast on Greenwich, but for comparison with the magnetic records for which Greenwich time had been used it appeared desirable to replace local time by Greenwioh time. The auroral character of the hour (G.M.T:) was regarded as given by the highest character which had been assigned to any observation made during the 60 minutes n: question. Records of no aurora taken under conditions when only the most brilliant
aurora could have been detected were disregarded. There were many: nights when the sky was largely or wholly covered by clouds, or obscured by drifting snow, and many hours of bright moonlight, and on such occasions ordinary faint aurora might have existed without detection. The absence of a record of aurora at times highly unfavourable to the detection of aurora is not satisfactory evidence that aurora did not exist,
§ 27: In assigning the auroral characters the magnetic curves were not consulted. The magnetic and auroral characters were indeed assigned by the same individual, but at entirely different times, and quite independently of one another.

Table LXX contains an analysis of the results, omitting March, 1912, and August, 1913, months for which only a few days' magnetic curves existed. It gives the number of times during each of twelve months when each auroral character $0,0.5,1,1.5$ or 2 was associated with the magnetic characters 0,1 and 2 : For example, during April, 1912 , auroral character $1 \cdot 0$ was assigned to 27 hours. Of these eight had magnetic character 0 , thirteen had character 1 , and six had character 2. There must inevitably be much that is accidental in the figures assigned to a particular month in Table LXX, but anything that is clearly apparent in the final figures should possess a substantial physical basis. The percentage figures in the last line of the table show in the clearest possible way a large rise in the magnetic character as the auroral character rises from 0.5 to 2 . But an equally significant fact is that the percentage figures for the two auroral categories 0 and $0 \cdot 5$ are absolutely identical. "This implies that, so far as magnetic phenomena are concerned, there is no practical difierence between the case when aurora is very faint and the case when no visual phenomenon can be detected. It is clear, however, that the absence of aurora does not necessarily imply the absence of magnetic disturbance, even during the hours most favourable for the detection of aurora. There are, as Table LXX shows, quite a considerable number of occasions when auroral characters 0 and 0.5 appear associated with magnetic character 2. They form it is true a much smaller proportion of the total number of cases in these two auroral categories than they do in the auroral categories $1 \cdot 5$ and 2 , but their number absolutely considered is not insignificant.

At the other end of the scale, there are a good many instances when auroral character $1: 5$ appears associated with magnetic character 0 . This was cspecially the case during July, 1913, and in that month there was even one association of magnetic character 0 and auroral character 2. This may suggest that the standard in yogue for magnetic characters during July, 1913, was higher than usual, but I do not, think this was the case. The natural tendency is for the standard to fall, rather than rise as magnetic conditions become quieter, and from all points of view July, 1913, was a very quiet month. The particular occasion when magnetic character 0 and auroral character 2 were associated was the hour ending at 17h. G.M.T. on July 26th. Magnetio
character 0 was assigned to every hour from 11 h . to 17 h ., and 1 to each of the subsequent hours of the day. As usual, in assigning the magnetic character, chief weight was given to the H and V traces. According to these, 17 h . was the natural hour at which to draw the line between a more quiet and less quiet portion of the day. But if the D trace had been given most weight, the line would naturally have been drawn at 16 h . and .17 h . would have got a 1 . This does not, however, really explain the phenomenon because up to 16 h .30 m . even the D trace fully deserved magnetic character 0 , while the ricte which led to auroral character 2 being assigned was that belonging to 27 d . 1 h .38 m . L.M.T. (i.e., 26d. 16 h .7 m . G.M.T.). It was as follows ; "A very bright band from the horizon in the N. to that in the E. by N. reaching altitude 6°. . \because In this case of course the aurora was low down and distant. The subsequent entries during the hour menfion only faint aurora; and the auroral character 2 may not have been fully deserved. It may be added that magnetic character 1 was assigned on July 26, 1913, to each of the four hours 14h. to 17h. at Eskdalemuir, so the time of the brightest aurora at Cape Denison was at least not universally quiet.

It may be well to explain that the analysis embodied in Table LXX was completed before I saw the published volume' "Records of the Aurora Polaris." It was based on an early proof confined to the auroral log, sent me by Sir Douglas Mawson. In his Table I, p. 144, Sir Douglas explains that in arriving at his percentages of the number of hours when aurora was seen out of the total number possible, he included 'all hours of moderate twilight and darkness and including all moonlight hours.". The percentage he arrived at, ' 52 , is obviously lower than we should obtain from Table LXX if we supposed it to include all the hours when aurora might be seen. The difference arises apparently from my omitting a number of hours when there was very bright moonlight, or when the lower part of the sky-where aurora was most often seen-was cbscured by cloud, haze or snow drift. It did not seem worth while to repeat the calculations as there was no reason to suppose that the hours I had accepted as of auroral character 0 were not magnetically a fair sample of the larger number accepted by Sir Douglas Mawson: The employment of G.M.T. instead of L.M.T. precluded in any case an exact agreement with Sir Douglas' figures.
§ 28. At a later stage, at the suggestion of Sir Douglas Mawson, a spẹcial investigation was made of auroral occurrences in the zenith. In all there were 180 (Greenwich) hours, which contained at least one observation of zenithal aurora, for which there were corresponding magnetic records. These 180 óccurrences were distributed as follows :-

Hour ending (G.M.T.) \qquad	7h.	$\therefore 8 \mathrm{~h}$.	9 h.	10h.	11h.	12h.	13h.'	14h.	15h.	16h.	17h:	18h.	19h.	20h.	21h.	22h.	'23h.
Occurrences	3	$\cdot 3$	4	1	2	4	2	6	3	2	5	11	24	32	40	30	8

There is thus ${ }_{\text {a }}$ very conspicuous maximum of frequency in the hour ending 21 h . G.M.T. (61 $\frac{1}{2}$ h. L.M.T.), which is in good accordance with .Sir.Douglas Mawson's*:

[^2]conclusions: The great concentration of the occurrences between 18h. and $2 \mathrm{~L} \dot{\mathrm{~L}} \mathrm{~h}$. G.M.T: is all the more striking because of the limitation of the night by daylight. May, Jüne and July between them supplied 149 of the occurrences. Except in these monthis there was no practical possibility of seeing auirora after 21 h . G.M.T.

The occurrence of magnetic characters during the 180 hours of zenithịl auirora. was as follows, the form of Table LXX being adopted :-

Comparing the percentage figures with those in the last line of Table LXXX, we observe that the difference is not large, but that iṇ each auroral class there is a smaller pere centage of occurrences of magnetic character 0 when the aurora is in the zenith than when its altitude is lower. If we calculate the mean magnetic character for the several auroral classes we find-

er	:0.5	1 \% 0	$1: 5$	
Mean magnetic character for zenithal auroras	. 0.60	e.7	$0 \cdot 96$	$1 \cdot 8$
Mean magnetic character for all auroras	$0 \cdot 46$	0.67	$0 \cdot 90$	

These figurees also support the view that zenithal auroras have a slightly greater. influence on the magnetic character than auroras of èqual luminous intensity at lowèr altitudes. It should, however, be remembered that during the 180 hours considered; zenithal auroras were not the only ones, nor wère they always the brightest ones. It may also be mentioned that aurora may have been in the zenith in an appreciable number of occasions not included. Occasions when the aurora was certainly near the zenith, but was not explicitly said to have reached the zenith, were disregarded.
§ 29. When compiling Table LXX the impression produced in my mind wàas that magnetic character 2 was surprisingly scarce. This led to the investigation on which Table LXXI is based. To explain it, take the case of April, 1912. Aurora was recorded at least once in 13 hours of the day, the last ending at 2ih. G:M:T. and there was no occurrence during the remaining 11 hours of the day. Accepting the 13 hours. as hours during which aurora could be seen, we should have 13×30 or 390 hours. . Magnetic trace was, however, lacking for six of these. The 384 hours' trace availabile included 58 which obtained magnetic character 2 . Of the 11×30 or 330 hours reprèseñting the timeè of day when daylighty prevented aurora from being seen, i3 hạd no. magnetic trace. The remaining 317 hours included 117 to which character 2 wasis awarded. For the whole day we have $384+317$ or 701 hours of magnetic trace, $6 f$ which $58+117$ or 175 got character 2. If we take 100 to represent the change whichi' the average hour of the day had of getting magnetic character 2 , the chance of
obtaining a 2 possessed by an hour in the part of the day when aurora could be seen was $100 \times(58 / 175) \times(701 / 384)$; or 61 ; while the chance of obtaining a 2 possessed by an hour in the part of the day when aürora could not be seen was $100 \dot{x}(117 / 175)$ x ($701 / 317$), or 148 . The calculation is only a rough one, because the number of hours which daylight permitted aurora to be visible was naturally less at the beginning than at the end of April. Also there might have been towards the end of the month an hour of the day during which the absence of record meant the absence of aurora, änd not the mere impossibility of seeing it. The difference, however, between the figures for the hours during which aurora could and could not be seen is in most months so large that the above mentioned limitations hardly matter:

The only months in whe hours during which aurora coild be seen were at all as disturbed as the daylight hours were the last three, May to July, 1913. These months showed an enormous fall in the number of disturbed hours as compared with the corresponding months of $191 \dot{2}$, and this fall was less conspicuous in the night than in the day hours. In June and July, 1913, the total number of hours of magnetic character 2 was so small that much weight cannot be assigned to the percentage figures.

Taking the whole twelve months included in Table LXXI; we see that the expectation that a particular hour of the dàys will be of magnetic character 2 was nearly 2.7 times as great for a day hourt when aurora could not be seen, asifor a night-hour? ,
 :.. 1913 was everywhere an exceptionally̆ quiet year; :and , 1912 though much quieter than the average year, may at least be regarded as the more normal year. If we confine ourselves to the seven months of 1912 in Table LXXI, the final percentages are altered only from 58 and 154 to 60 and 152 respectively. The difference between day and night inagnetic disturbance in the Antarctic may of course bee much reduced in a highly disturbed year near sunspot maximum, but so far as 1912 añd 1913 were concerned the difference was least in the quietest months.

The results we have reached may seem at first sight parädoxical. Bright aurora is intimately associated with magnetic disturbance, and yet the hours during which aurora is seen are the quietest of the 24 .

In considering the phenomena, the first question that presents itself is whether there is any essential difference between magnetic disturbance associated with visiblè aurora and magnetic disturbance not so associated. As Țable LXX shows magnetic disturbance at night is in a good many cases unaccompanied by visible aurora, and it is conceivable that the mechaniism of production of these disturbances and of the disturbances experienced in daylight hours is different from that of the disturbances äccompanied by aurora. Oṇ the other hand, if we take the ordinary magnetic storm; as recorided in Europe, we have the storm simultaneously in progress at stations in the south, where no aurora is or ever could be seen, and at stations in the north where
aưrora is brilliant: In the case of the vertical force the type of disturbance at.a European station does seem to depend to a considerable extent on the time of day, but we cannot from the type of the disturbance in the \dot{D} and H traces infer what the hour of the day is. It is true that when bright aurora is reported at a British station the magnetic traces at the time are usually exceptionally oscillatory, and such rapid oscillations are usually confined to the night hours. But then in Britain the daylight hours are the normally quiet ones.

In the Antarctic, on the other hand, it is the daylight hours that are normally the disturbed ones, and while some of the most brilliant aurora were unquestionably accompanied by magnetic disturbance of an extremely oscillatory character, highly oscillatory conditions were also experienced in several hours near local noon.

If' we regarded disturbances accompanied by aurora at Cape Denison as of a special type, then the other type of disturbance including all unaccompanied by aurora would have aṇ extraordinarily pronounced diurnal variation, with a very low minimum at night.

Everything considered, it seems most reasonable to suppose that the presence or absence of aurora makes no fundamental difference to magnetic disturbance, and that the presence of daylight alone prevented aurora from being visible during many of the daylight hours when active magnetic disturbance prevailed. Possibly the existence of a distinctive spectrum may lead to some method of ascertaining the presence of aurora during daylight, and in that event we hope to reach more definite conclusions.
.... $\S 30$, While there is a marked tendency, as Table LXX shows, and as will appear more clearly presently, for brilliant aurora to be associated with active magnetic disturbance, there is no close reation between the apparent intensity of the two phenomena.

The question is, however, a very complicated one for various reasons. In the first place the apparent brightness of the aurora is largely dependent on the meteorological condition, on the age of the moon, and on the hour of the day. An aurora may be bright over the greater part of the sky, or over only a small part. The brightness may be altering slowly or rapidly with time. The aurora may appear stationary, or in rapid motion: Its distance may be less than 100 km . or more than $1,000 \mathrm{~km}$. There are often visible at the same time auroras of different forms, in different directions. In the ordinary slow-run magnetogram it is hardly possible to associate any individual magnetic change with any individual auroral phenomenon. The magnetic changes which are clearly recorded are of comparatively slow development. When, as sometimes happened during aurora, there were rapid oscillations, the traces were apt to be faint and to intercross, and the means did not exist of fixing the times of turning points with any high precision. Hour lines had been drawn in pencil,
obviously with much care but it could not safely be assumed that the traces of the three elements were absolutely devoid of parallax. Again, there being no auroragram; the exact, nature of the changes taking place in the aurora near the specified times of observation was in general unknown. Times of maximum brightness were usually problematical. Thus it was quite impossible to say whether magnetic disturbance and auroral intensity were waxing and waning together.

As a preliminary, the best course seemed to be to take out from the auroral log the hours in which aurora was most prominent, and to make a detailed examination of the magnetic curves during these hours. Table LXXII contains the results of this examination. .. It includes all Greenwich hours, for which magnetic traces existéd, during which one or more auroral observations had been adjudged to merit character 2.0 or 1.5 . Sometimes, as it happened, more than one observation within the hour - had been deemed of character 1.5 or $2 \cdot 0$, but in such cases only one auroral occurrence is chronicled in the table. Speaking generally, preférence was given to that occurrence which seemed to constitute the most intense aurora, but sometimes the selection was determined by the greater explicitness of the information conveyed. The local times employed in the auroral volume are reproduced as printed. The corresponding Greenwich times are also given; and it should be noticed that the local and Greenwich days often differ. Also auroras occurring on what following local time is the first day of a month; may when Greenwich time is used belong to the previous month:

The letters $\mathrm{g}, \mathrm{l}, \mathrm{p}, \mathrm{r}, \mathrm{y}$ in the column headed colour stand respectively for green, lilac, pink, red and yellow. In the column headed type the letters A, B, C, G, P, S stand respectively for arc, band, curtain, glow, patch; and streamer. More than one type was often present, and not infrequently several specimens of the same type were simultaneously visible. Streamers and glows when seemingly of trifling importance: are sometimes omitted from the table. The entry under Alt(itude) usually gives the greatest height above the horizon attained by any species of aurora at the time of observation. But sometimes when the highest aurora was clearly of minor intensity; the entry: refers to the brightest aurora present. Preference was also given to the more istable and substantial forms, such as arcs and curtains, as compared with patches and streamers. Aurora usually extended over a considerable area of the heavens. The entry under dir(ection) is intended to give roughly the azimuth of the centre of the auroral area. For example, N. appears if the aurora is given as extending from N.W.. to N.E. or from. W.N.W. to E.N.E. In many cases no doubt the observer, if fixing on the centre or greatest concentration of aurora at the time, would have judged somewhat differently. No direction is specified when aurora was in the zenith, though of course in such cases there may be much more aurora in one sector of the heavens than another. The general results as to direction in Table LV are in full accordance with Sir Douglas Mawson's conclusions.* "A.very small proportion of the den onstrations

[^3]ever appeared in the southern sky. The most frequent sector is between N.W. and N.E. and more apundantly between N. and N.E. thann between N. and N.W."
7. Of the five columns devoted to the times of turning points the first two give the (Greenwich) day and hour, the last three the minutes as applying to D, H and V respec- ${ }^{-}$ tıvely. There were aliways several turning points, often quite a large nụmber, within the hour, but as a rule only the most prominent one for the element concerned is recorded: Sometịimes, however, two turning points are given when both were of special prominence. For example, on June 9th, 1912, turning points for H are entered at 12 h .15 m . and at 12h. 20m. These represented the absolute minimum and maximum. of the day, the range 311 l for the day arising from a change which occupied only five minutes: Some times a turning point is entered when the magnetic conditions are described as quiet. In such a case it. represents what was a maximum or minimum for a period usually of an hour or more. When no entry is made in any of the three " minute" columns, it means that none of the visible turning points seemed of special prominence or significance, The letter E attached to the time of a turning point in D implies that it was a maximum of easterly (or minimum of westerly) declination; the letter W implies the oppositẹ; The sign + attached to a turning point in H or V signifies that the element at this time went through a maximum value. The sign - similarly signifies a minimum value. For example, on May 16, 1912, between 8h. and 9h. Greenwich time D attained an easterly maximum at 8 h .30 m ., while H and V each passed through a minimum value at $8 \mathrm{~h}, 40 \mathrm{~m}$,

The entry in the column headed h in Table LXXII it should be noticed is the hour at which the 60 minutes to which the ranges apply begin. For example, on May 16; 1912 , the ranges $3 l_{\gamma}$ (or $34^{\prime}-2$) in $\dot{\mathrm{D}}, 22 \gamma$ in H and 22γ in V belong to the hour commen; cing at sh. G.M.T: Ranges are given to ly but this degree of accuracy can hardly be claimed, especially in the case of V where the trace was not infrequently somewhat indifferent. Any uncertainty attaching to the scale values given in Vol. I, Part I, pp. 66; 71,72 and 74, applies of course to the ranges in Table LXXII, but uncertainties of base. values do not come in, as the ranges were all calculated from differences of ordinates.
\cdots The description of the curve characteristics is necessarily very slight. The entry "Bay EW". means that during the hour in question the most prominent change in D was a movement to the east, followed by a returning movement to the west:. ". Bay + -" in the case of either H or V medus that the most prominent phenomenon was' a rise followed by a fall. "Bay WE" and "Bay-+" signify the exact opposite, thee westerly movement in ' D ' and the fall in H or V now coming first. During these bay movements shorter period oscillations nearly always occurred, but their existence is not mentioned explicitly, unless they were more prominent than usual.' 'So-çalled oscillationt "lastéd only a fẹ minutes, while the to and fro mover ments described as bays usuatly took at least half an hour, sometimes a couple of hours. To and fro movements interimediatexin length between oscillations and bays are oometimes described as undulations, more especially when successive members of the
series are of similar length and amplitude. In many cases during aưorora the magnetio. curves presented no unusual features, exhibiting the usual succession of minor irregular oscillations. The term applied in such cases is "irregular." But sometimes along with the short period oscillations there was a conspicuous general drift in one direction. In such cases the direction of the change is indicated, whether an easterly or a westerly movement in D, or a rise or fall in the force. In many cases the propriety of the description bay $\mathrm{E}-\mathrm{W}$ or bay + - is beyond any question. We have, for instance, following a quiet time a movement setting in simultaneously or nearly so in the three elements, and persisting in one general direction for a considerable time. The rate of change gradually reduces to zero, a recovery sets in, the element returns to nearly its original value and becomes nearly stationary. In other cases, however, the accuracy of the description is more open to doubt. What one man takes as the E movement in an $\mathrm{E}-\mathrm{W}$ bay another might accept as the E movement in and earlier W-E bay. A good many cases of this kind have been described a "irregular." A more detailed account of one or two of the earlier occurrences in Table JXXII may help to make things clearer.

On March 24, 1912, there was a ll .turning point (westerly extreme) about 10 h .55 m . G.M.T.T. Between 10h. 55 m . and the easterly extreme at lih. 10 m . mentioned in the table there was a movement of about $14^{\prime}(13 \gamma)$ to the east. This was interrupted by some six small short period oscillations. Between 11 h .10 m . and 11 h .46 m . there was an aggregate movement of $13^{\prime}(12 \gamma)$ to the west, interrupted by some 15 small short period oscillations. The portion of curve between 10 h .55 m . and 11 h .46 m . comprises the bay E-W assigned in Table LXXII to the hour 11 h . to 12 h . Between 11h. 46 m . and 12 h .5 m . (the E turning point mentioned in the table) there was a smart movement of $30^{\prime}(27 \gamma)$ to the east, interrupted by some nine minor oscillations. The return movement to the west, including some nineteen small oscillations, was mostly concluded by 12 h .46 m ., and the second bay $\mathrm{E}-\mathrm{W}$ which is assigned in. Table LXXII to the hour 12 h . to 13 h . may be regarded as extending from 11 h .46 m . to 12 h .46 m . But the general movement to the west was resumed at a slower rate after 12 h .46 m. , and the position existing at 11 h .46 m . wạs not recovered until 13 h .30 m . Thus opinions might differ as to when the second bay ended. During the two hours in question the H trace shows a number of tiny.oscillations and there is even a slight general concavity (maximum of force) centering about 12 h . 0 m ., but this seems too indefinite to be described as a bay + -. Between 13h. and 14h. on March 24, more than 30 small oscillations varying in character can be detected in the D curve. These were superposed on a general drift to the west, which continued until nearly. 15 h . The turning point assigned at 13 h . 45 m . in in the table was the result of a larger than usual swing to the west, immediately reversed, which supplied the most westerly reading between 12 h and 14 h .25 m .

Take again March 29, 1912. Here there was an exceedingly prominent bay;

for the day. There were synchronously prominent bays, each +- , in H and V The turning points at 15 h .55 m . in H and 16 h .10 m . in V -which represent the maxima for the day-differed a little in time, but the curves are rounded; and small oscillations determined the exact times of the maxima. Opinions might differ as to exactly when the bay movement began or ended in any one of the elements, but the existence of a bay movement, of an outstanding character as compared with the movements in adjacent hours, is patent to the eye. In this case the one bay movement was common to the two successive hours 15h. to 16 h . and 16 h . to 17 h . Also while there were as usual numerous short period oscillations, these were of trifling amplitude in the case of H and V, and even in the case of D. doubt was felt as to whether special mention of their existence was called for.

There are eleven hours in Table LXXII for which there is no auroral entry, for example 11h.: to 12 h . on April 27, 1912. The auroral observation leading to the inclusion of 10 h . to 11 h . in the table occurred at 10 h .59 m ., and there was every reason to suppose that the aurora continued bright during the earlier part of the subsequent hour. In this and all the other similar cases, the magnetic character of the curves showed that the hour was clearly associated with an immediately preceding or succeeding hour to which auroral character 1.5 or 2.0 had been assigned.

During some of the principal auroras the most outstanding magnetic phenomenon is undoubtedly the size and number of the short period oscillations, especially in D and H. Examples are afforded by June 8, June : 9 and July 6, 1912. . Usually a bay movement is also recognisable on these occasions, especially in the V curve. When bay movements occurred simultaneously in the three elements the most üsual type was EW in D, and + - in H and V. Some of the best marked and most. regular bay movements were of comparative small amplitude, and on such occasions two bay movements sometimes occurred in close or immediate sequence. One of the two bays might be of very small amplitude, and visible only because the subsequent or preceding portion of curve was exceptionally quiet.
$\because \cdots . \S 31$. In all, 250 hours are included in Táble LXXII. The earliest ended at 7h.; the latest at 23 h. G.M.T., and the number of occurrences in the successive Greenwich hours were as follows:- $-1,6,10,11,19,25,38,37,19,19,7,7,10,12,20 ; 7,2$. The two hours ending respectively at 13 h . and at 14 h . G.M.T. supplied practically equal numbers, 38 and 37 ; of occurrences. Thus the time of the greatest frequency may be put at 13h. G.M.T., i.e., $22 \frac{1}{2} \mathrm{~h}$. L.M.T., and another maximum appears during the hour ending at 21 h ., say $20 \frac{1}{2} \mathrm{~h}$. G.M.T., or 6 h. L.M.T. This seems in general agreement with the results obtained by. Sir Douglas Mawson* from all his auroral observations. It is true that he makes the morning maximum of frequency at 6 h . or 7 h. L.M.T. the principal one, but that is when allowance is made for the impossibility of seeing aurora at these hours: except near mid-winter. Sir. Douglas'; remarks "Our: experience at

[^4]Cape. Denison very conclusively indicated that the daily period of apparently most intense auroræ was between 9 p.m. and 11.30 p.m. (i.e, between $11 \frac{1}{2} \mathrm{~h}$. and 14 h . G.M.T.)"' fits in exactly with the results embodied in Table LXXII. These results also throw an interesting light on the data arrived at in Tables XLVII and XLIX for the diurnal: variation of magnetic disturbance at Cape Denison. . Taking the whole fifteen months. available, it was found that whether the mean magnetic character or the frequency of occurrence of character 2 was accepted as the criterion of magnetic disturbance, there was a principal maximum in the hour ending at 2 h . G.M.T.; and a secondary maximum in the hour ending at 14 h . G.M.T. - It would appear that this secondary maximum of magnetic disturbance is intimately associated with the maximum in the frequency of bright aurora which occurs at practically the same hour.

The fact that Sir Douglas found, when allowance was made for the influence of twilight, that the frequency of aurora went on increasing from a minimum at 2 h . L.M.T. (161 $\left.\frac{1}{2} h . ~ G . M . T.\right) ~ r i g h t ~ u p ~ t o ~ t h e ~ t i m e ~ w h e n ~ d a y l i g h t ~ i n t e r v e n e d, ~ i s ~ a l s o ~ v e r y ~$ suggestive in view of the fact that the all month results in Trables XLVII and XLIX give minima of magnetic disturbance in the hour ending at 17h. G.M.T.; and a continual increase thereafter up to the maximum in the hour ending at 2 h. G.M.T. (or 1112 h. L.M.T.). This is at least in harmony with the view that the phenomena which appear as aurora when the absence of other light permits, .continue (whether visible or invisible) throughout the twenty-four hours, and attain at Cape Denison a maximum. near local noon.

Of the 250 houis included in Table LXXII, there were only 227 for which the record was complete for all three magnetic elements. The distribution of these 227 hours throughout the (Greenwich) day, and the corresponding mean values calculated for the hourly ränges appear in the earlier columns' of Table LXXIII. Mean results are given for the two years separately, as well as for the two combined. Excluding the first and last hours, for which the number of occurrences was insufficient, the ranges obtained for D show little dependence on the hour of the day. In the case. of H and : V. the ranges tend to be larger in the five hours ending at.16h. G.M.T. than at other times. The mean V. range is the largest in both years, but its excess over the mean D and H ranges is not large. For the two years combined, the mean D range is ashade less than the mean H range. In the case of the absolute daily range-as anpears from Tables XLV and XLVI of Vol. I, Series B, p. $266-\mathrm{V}$ supplied as here the largest mean value, and relatively considered the excess of the V daily range over the D daily range was fairly similar to that seen in Table:LXXIII. But the mean absolute daily range in D exceeded that in H : r There was, however, a tendency in the absolute H range to increase in relative importance as disturbance increased.

A remarkable feature in the results from hours of bright aurora in Table LXXIII is the relatively small size of the mean hourly ranges for 1913 as compared with those for 1912. The reduction is relatively much greater than in the case of the all day
'daily ranges. It is due partly to the absence during the auroral displays of 1913 of any magnetic disturbance approaching several associated with auroral displays during June and July, 1912, and partly to the large number of cases during 1913 when magnetic conditions at times of aurora were quet rather than disturbed.

The last eight columns of Table LXXIII deal specially with June and Septembéri, '1912, the only two months for which measurements had been made of houirly ränges on all days. Of the 140 hours of bright aurora-during 1912 , June contribited 39 and September 19: The columns headed "aurora" give the mean ranges derived from thēse thirty-nine or nineteen hours. .The numibers of occasions for which the respective hourly means were obtained are given enclosed in brackets. For example; the value for the mean range of H for the hour $12-13 \mathrm{~h}$. in June was a mean derived from seven days. The columns heâded "all"give for comparison the mean ranges derived from all days of the month.

The values given at the foot of the columns headed "auirora" are obtained from the aggregate of the ranges on all the hours of bright aurora divided by the 'number, 39 or 19, of these hours.' The values at the foot of the columns headed " all" arée énalogous quantities derived from the all day ranges. For example, the mean ${ }^{\text {'valué }} 26 \mathrm{y}$.for H in June is derived from $(18 \times 1+30 \times 4+33 \times 7+\ldots \ldots) \div 39$. : $:-1$.

It will be seen that while the range during an hour of bright aurora was not invariably in excess of the average from aill days of the month, the exceptions to the rule were few, and on the average occasion of bright aurora the range was more than thè mean from all days.'

The mean hourly ranges derived from the 58 hours composed of the 39 June and 19 September hours of bright aurora are respectively 50γ for H and 67γ for \forall V. The former is almost identical with and the latter not very largely in excess of the means derived from all the hours :of bright aurora during 1912. It thus seems reasonable to suppose that the conclusions derived from June and September are fairly applicable to 1912 as a whole.
§ 32. As already mentioned, the assignment of auroral characters, and so the choice of hours included in Table LXXIII, was made before the publication of the volume "Records of the Aurora Polaris.". When it appeared it contained on p. 149 a. list drawn up by Sir Douglas Mawson of the cases whën " special colour was noted." The great majority of the hours thus indicated had been included in Table LXXIII, but in view of their special selection by Sir Douglas Mawson it appeared desirable to discusss them individually in more detail, and that accordingly has been done. The magnetic curves had been gone through anterior to any of my work on the aurora, and a list had been made of short period disturbances for compariṣon with corrèsponding disturbances 'at Cape Evans or Eskdalemuir. The list so formed "included a

 lêss ex̀hâuistive thän woüld otherwise have beën thêe câsé. It is hoped to řeproducë sômê of the portions of magnetic trace concerned in a subsequent volumë.

- May 5,$1912 ; 21: 30(11 \grave{h} .59 \ddot{m}: G: M: T \cdot):=$ The last previous observation recorded at which aurora was observed; ôcciurred $3 \frac{1}{2}$ hours earlier, so it is uncêrtain how suddenly the aurora developed. The note at $21: 30$ is " Clear sky: Bright moonlight. . . . A bright aurora in progress. A contorted curtain about 45° up . . ." The colours

 and 24.00 "No aurora visible.". The auroral characters awarded were 2.0 for the hours $12 \mathrm{Z} \hbar$. and 13h., and 0.0 for 14 h : and 15 h . G:M.T.

Wैe have here to dô apparentiy with a very intense aurora, whic̈h dida not, however, reach the zenith, añd which was of comparatively short duration:

Ĩn this instañce whatt the magnetic curves show is a fairly isolated disturirbaño coómmencing shàrply in both D and V at about iih: 15 m . The H magiet wã sticking at the time. The initial movements, to the east in $\overline{\mathrm{D}}$ and increase in $\dot{\mathrm{V}}$; ẃère very lärge and rapid: They wère fólilowè̉ by rapid oscillations of considérable size, èspecialiy in D, the oscillation being most noteworthy between ilh. 30 m . and 12h: iöm. The oscillations about lilh. 50 m . brought back D beyond its original position, and what the D trace shows is a sort of double bay with the magnet finally pointing a good deal to the wést of its original position. The V trace shows a single dêep bäy; the recovery not being quite complete. This was one of the shört storms common to Cape Denison añ Cape Ėvañs. The störni was one of those deált with
 reproduced in Plate XXXXVIİA of that volume; which include s the five hours ending at 13h: on May 5:

Magnetic chaaracter 2 was assigned to only two hours 12 h : and 13 Bh :; the same ăs got auroral character 2, but character 1 was assigned from 8 h: to 11 h and from. 14 h : to 19 h . Thus it was not a case of a highly disturbed time occurring in an otherwise absolutely' quiet time, but of a period much more highly disturbed than adjacent pertiods, and exhibiting disturbance of a special type. The conclusion of the speciai disturbiannce is not so clearly marked as its commencement, but there was no striking movement after 1 1́2h. 30m: and the bay in V ended about 13 h .

Our positive information as to the preseince of aurorạ is linited to the tean mintutes 11 h . 59 m : to $12 \mathrm{~h}: 9 \mathrm{~m}$: G:M:T: which includes only the end of the period düring which mägnetic oscillátions wêre prominént: We also kne that aürora häd ceàsed to be visible by 13 h .14 m .

MAGNETIC DISTURBANCE-CHREE.
-May 12, 1912, $17 \cdot 00$ (7h. 29m. G.M.T.).-The earliest wuroral note on this evening is " 16.45 . The sky is now dark enough to discern several of the brighter stars. An auroral glow is just visible in the N.E. and is rapidly spreading." . The note at 17.00 is "A fine display is in progress, extending . : \because to a height, of about $20^{\circ}, "$ and a reference is made to red colour in the lower border of the principal curtain: The only further auroral note for several hours is " $18 \cdot 00$ (8 h .29 m. G.M.T.) The nebulous arch still continues, but is gradually fading."
'The auroral characters awarded were $2 \cdot 0$ for 8 h ., and 1.0 for 9 h .
Aurora was noted again at $21 \cdot 45$ (12 h .14 m . G.M.T.), but we have here to do apparently with an isolated display, which was brilliant for an hour or so.

May 12th was a day of considerable and prolonged magnetic disturbance. In all, fifteen hours including lh . to 9 h . were awarded character 2. The day was also highly disturbed at Cape Evans, and the Cape Evans' curves for the first fourteen and the last three hours of the day are reproduced in Plate XLI of the volume devoted to that station. Two intervals, 7 h . to 9 h. and 11 h . to 12 h ., contain comparatively isolated disturbances, and are included amongst those for which comparative Cape Denison and Cape Evans data will be given. The first of the two intervals includes amongst those for which comparative Cape Denison and Cape Evans data will be given. The first of the two intervals includes the time of the brilliant aurora. The aurora was first seen during twilight, and but for the twilight it might possibly have been seen earlier than 7 h .14 m . C.M.T. . The D trace was the most disturbed. It shows a deep bay, the turning point-in which at 7 h .35 m . supplied the extreme easterly reading of the day. The commencement of the bay might be put at 7 h . or earlier, but the most striking part of it was a sharp easterly movement commencing about 7 h .25 m . and including the time when the most brilliant aurora was recorded. After the easterly extreme, there was a large nearby continuous movement to the west, the most rapid portion of which ended before 8 h . 15 m . During the time covered by the bay in the D curve there was also a bay in the V curve, commencing at about 7 h .15 m . and going on until about 9 h ., though the end is rather indefinite. There was also disturbance in H ., but it was of a less regular kind, and was no larger than during adjacent hours. The disturbance was not one which made any great appeal to the eye, and was in no way remarkable for short period oscillations.
... May 15, 1912, 20.45 (11h. $14 m$, G.M.T.).-The latest previous auroral note stated that the sky was obscured until 20 h . The note at $20: 45$ runs: "A bright nebulous band 30° up :. . . at the E, extremity was a strongly coloured green, yellow and red streamer." Aurora of various intensities mostly faint is noted at intervals up to $23: 0{ }^{2} 0$ (13 h .29 m . G.M.T.), after which no aurora was seen for some hours. : In this case we have an aurora lasting for more than two hours, but after the first hour it does not seem to have been at all bright. :The auroral characters awarded were $\mathrm{I} \cdot 5$ for 12 h , and 13 h ., and 0.5 for 14 h . The magnetic characters were 0 for 10 h .

2 for 11 h . and 12 h ., and 1 for 13 h . and 14 h . The D trace has rather a well marked bay (easterly deflection) commencing about 10 h . and the interval 10 h . to 12 h . was one of those selected for comparison of Cape Denison and Cape Evans. The disturbance in H and V seemed rather to lag after that in D ; and ressembled rather two short bays than one long one. All the traces showed active oscillations, though of no great size about llh. and a little before 11 h .30 m . The times when the brightest aurora was noted were 11 h .14 m . and 11 h .31 m . Though decidedly reduced after 12h., magnetic disturbance remained fairly active until 13 h .

The magnetic disturbance on this occasion, though not very large, is fairly distinctive, and its most active time, if not identical with the time of the brightest aurora, made at least a close approach to it.

June 3, 1912; $21 \cdot 40$ (12h. 9 m . G.M.T.).-It is noted that at i 8.00 the sky was clear, but no aurora was visible. The next note at $21 \cdot 30$ is to the effect that an arch was visible in bright moonlight. The note at $21 \cdot 40$ states, "The arch has slowly extended to the W., and is yery bright and shows a red lower border and a greenish tint above." The note at 22.00 is to the effect that the display had faded very much, and no aurora was visible at $22 \cdot 10$ or $22 \cdot 30$. A slight revival occurred at $22 \cdot 45$ (13 h ; 14 m . G.M.T.) and $23 \cdot 30$ (13 h .59 m . G.M.T.). The auroral characters awarded were 1.5 for $12 \mathrm{~h} ., 2.0$ for 13 h . and 1.0 for 14 h . Every hour subsequent to 8 h . was awarded magnetic character 1, but the disturbance was of a very third-rate character, and there was nothing exceptional between 12 h . and 13 h .

June 8, 1912, 22.55 (13h. 24m. G.M.T.) et seq.-Aurora of minor brightness was noted at 20 h .35 m . (11 h .4 m .) and 22 h .40 m . (13 h .9 m . G.M.T.). The note at 22.55 runs, " A very brilliant aurora . . . Two strongly defined curtains overhead . . . These wax and wane rapidly . . . The luminescence ripples along the curtains." The display seems to have been at its maximum from $22 \cdot 55$ to $23 \cdot 10$ ($13 \mathrm{~h} .39 \mathrm{~m} . \mathrm{G} . \mathrm{M} . T$.). "The brightest colour effects happened between 23 h . and 23 h . 5 m ., when bright rose-pink and red appeared below the usual greenish-yellow of the curtain, and emerald to peacock green above." The curtain reached the zenith during this time. Aurora of considerable though smaller brightness is noted as appearing in or near the zenith at $23.12,23.25$ and 23.40 (14h. 9m. G.M.T.), and at lower altitudes at various times up to $00 \cdot 40$ (15 h .9 m . G.M.T.). No aurora was seen at 00.50 . There was a faint revival of it at 1.00 and $1 \cdot 15$ (15 h .44 m. G.M.T.), but that was its last appearance. The auroral characters awarded were 1.0 for 12 h ., 2.0 for 14 h ., and 1.5 for 15 h . and 16 h . Magnetic character 1 was awarded to 12 h ., but with that exception every hour up to 16 h . got a 2 . The day was thus generally disturbed, but the disturbance between 12 h .30 m . and 14 h .30 m . G.M.T. was quite outstanding. This was one of the intervals selected for the comparison of Cape Denison and Cape Evans. The D, H, and V traces were all in the highest degree oscillatory from about 13 h .20 m . to 14 h . G.M.T. This includes the time when the most striking colour effects were seen.

This auroral display is particularised by Sir Douglas Mawson as one of the most outstanding displays observed. At its climax itt "was a remarkable exhibition of intense anuroral activity and of colour:" Ong the magnetic side we have one of the most outstanding exhibitions of large rapid oscillations, and the range in H H and still more in Y, was very large.

- The Cape Eyans curves for the whole of June 8th, and the first five hours of June 9th, are reproduced in Plate LIII of the volume dealing with that station:

June 9; 1912, $22 \cdot 48$ (13hh. 17m. G:M.T.)-Aurora was observed at the earliest observation'of the evening 17.00 (7h, 29m. G.M.T:) and at every subsequent obser vation with one exception. At $22 \cdot 25$ (12h. 54m. G.M.T.) it was very bright, It was fainter at $22 \cdot 40$-but was brighter again at $22 \cdot 44$. The note at $22 \cdot 48$ is, " A small amount of colour appears : . . and the aurora has brightened generallyy A band reached the zenith at $23: 00$ (13 hh .29 m ; G.M.T.): Aurora of varying brightness was recorded at intervals until 02.35 (17 h . 4 m.$)$.) After an hour or more's absence, it was again visible, but very faint, The auroral characters aparded were $\frac{1}{7} 0$ from " 8 h . to 11 h . $2: 0$ for 13 h . and 14 h . $1: 5$ for 15 h . $1: 0$ for 16 h , and 0.5 for 17h. and 18h.

With the exception of $7 \mathrm{~h} ., 9 \mathrm{~h}$, 11 h , and 17 h ., which got 1 , all the hours were of magnetic character 2: There was active disturbance ar Cape Denison the whole day subsequent to 11 h .40 m .; with comparatively quiet interyals from 14 h : 0 m . to 14h. 30 m . and from 16 h . to 17 h . There were specially oscillatory times from 12 h .0 m . to 12 h ; $45 \mathrm{~m}, \mathrm{n}$ and from 14 h . 50 m , to 15 h , 40 m . The only aurroral observation during the first of the intervals was at $21: 45$ (12 h .14 m . G.M.T.); The remark made is merely "Ditto," implying that the conditions were similar to those observed $1 \frac{3}{4}$ hours earlier, when there was a nebulous band only 5° up. At the time of the next observation ' $22 \cdot 25$ ($12 \mathrm{~h}, 54 \mathrm{~m}$.), when aurora was described as very bright, magnetic disturbance though active was much less active than it had been shortly before: As regards the second interval, 14h. 50m. to 15 h . $40 \mathrm{~m}:$; when rapid magnetic oscillations were particularly in evidence, there are notes of aurora at 00.20 (14 h . 49 m.), 00.40 (15 h . 9 m)), 00.55 (15 h .24 m .) and $01 \cdot 10$ (15 h .49 m . G.M.T.). On the first of these four occasions the note runs, "The aurora has increased in brilliancy. An arch 15° up . : ". 'On the last three of the occasions it was less bright. The fact that magnetic disturbance was much more prominent during these two times of moderate aurora than during the time of its greatest brilliancy is evidenced by the fact that the times which had been selected for the comparison of Cape Evans included only the two intervals 11 h , 30 m : to $13 \mathrm{~h} .0 \mathrm{~m} .$, and 14 h .30 m . to 16 h .0 m . On this occasion; as a matter of fact, the disturbance at Cape Evans was comparatively trifling.

Whilst the magnetic disturbance synchronises with the brightest aurora was considerably smaller than during either of the two intervals mentioned above, it would not have failed to attract special attention if it had occurred on an otherwise quiet day. In V there was a pretty regular bay + - (or increase followed by
decrease) lasting from about 13 h .10 m . to 14 h .0 m ., which may be regarded as including the whole period of the brightest aurora. The V trace during this time was in no way specially oscillatory. In H there was a sharp bay -+ from about 13 h .17 m . to 14 h .14 m ., and short period oscillations were more in evidence than in V . The movements in D included an extreme westerly turning point about 13 h .25 m . and an extreme easterly turning point at about $13 \mathrm{~h}, 36 \mathrm{~m}$; The ranges included in the movements between 13 h . 10 m . and 14 h . 0 m . were 68% in D, 128 rin H , and 136γ in V.

June 10, 1912, 23.05 (13h. 34m. G.M.T.) et seq.-No aurora was visible at $21 \cdot 15$ or $21: 45$ (12 h .14 m. G.M.T.), but the lower sky was then obscured by snow drift; Low arches were observed at $22 \cdot 07$ (12 h . 36 m . G.M.T.), $22 \cdot 15$ and $22 \cdot 30$. The first intimation of prominent aurora is " 23.04 (13h. 33 m . G.M.T.). A bright arch 35° up." The following note is attached to the interval $23: 05$ to $23 \cdot 20$ (13 h .34 m . to 13 h .49 m . G.M.T.):-"At 23h. $5 \frac{1}{2} \mathrm{~m}$. the aurora burst out forming a great broad mass 40° up. . . The colouration on the upper portion was bright green, shading off below into reses pink and red: The colour effect is the greatest yet noted at Cape Denison : : Color effects repeatedly appeared untill 23 h . 10 m . : . . The phenomenon gradually waned.? Brightening of the display was noted at $23: 30$ (13 h. 59 m . G.M.T.), 23:32 and 23.35 . Aurora apparently of considerable strength was noted at $23: 43$ (14h? 12 m . G.M.T.) and $24 \cdot 00$ (14h. 29m. G.M.T.): It then became fainter, and was even invisible at 01:25 (15 h .54 m . G.M.T.). Later it revived, was bright in the zenith ao 04:10 (18h. 39 m : G.M.T.), and continued to be visible until 07:30 (21 h . 59 m . G.M.T.). Aurora was thus present almost continuously duping nearly the whole night. The auroral characters awarded were $2 \cdot 0$ for 14 h . and 15 h ; $1 \cdot 5$ for $13 \mathrm{~h} ., 18 \mathrm{~h}, 19 \mathrm{~h}$, and 21h., 1:0 for 16h., 20h. and 22h.

Magnetic character 2 was assigned to every hour from 13 h. to $24 h$., with the exception of 17 h ., which got a 1 . The latter was an hour in which no aurora was seen.

The earliest disturbance that makes an appeal to the eye is a bay, E.W. in D, $+\rightarrow$ in H and V , lasting from about 12 h .15 m . to 13 h .20 m . This is remarkable chiefly for the resemblance between the traces from the three elements, which remained closely in phase.

As will appear later, resemblance between the H and V. traces was often close, but on this occasion the resemblance extends to the D trace. During the time of the bay the ranges were $\mathrm{D} 30 \gamma ; \mathrm{h}$. 47γ, V 83\%. Rapid oscillations, though of no great size, were present from 12 h .30 m . to $12 \mathrm{~h}, 50 \mathrm{~m}$. This includes a time, 12 h .44 m ., when a bright, though low, auroral arch was observed.

The next movement which appeals to the eye is a sharp bay, -+ , in the H trace, lasting from about 13 h .35 m . to 13h. 55m. The movement which produced practically the total fall in $H, 86 \gamma$, tcok only two or three minutes, and occurred
during the time when the aurora was at its brightest. During the time of this bay in H , short period oscillations, though not of any great ampiitude, were prominent in the traces of all three elements, but the H trace was the only one showing any marked individuality.

Disturbance remained active but of a somewhat nondescript character. An idea of its activity can be derived from two hourly ranges which were as follows, the auroral characters being added for purposes of comparison :-

Hour onding at-	13h.	14h.	15h.	16h.	17h.	18h.	19h.	20h.	21 h.	22h.	23h.	24h.
Hourly range D	γ^{\prime} 25	$\stackrel{Y}{50}$	γ 39	Y .76	γ 35	γ 120	γ 117	γ 94.	Y 47		γ 102	Y 38
Hourly range H	46	101	47	40	29	42	44	54	46	47	83	51
Hourly range V	83	109	51	83	47	74	. 160	85	102	29	120	31
Auroral character ...	1.5	$2 \cdot 0$	$2 \cdot 0$	1.0	:••	1.5	1.5	$1 \cdot 0$	$1 \cdot 5$	1.0	$0 \cdot 0$	\cdots

It will be observed that the ranges within the hours bear little relation to the auroral character figures. No aurora was observed within the hour ending at 23 h ., but the ranges it supplied are amongst the largest.

June. 30, 1912, 20.52 (11h. 21 m. G.M.T.).-Bright moonlight prevailed on this -occasion, which probably explains the restrained nature of the language descriptive' of the aurora. The earliest note of aurora was at 20.08 (10 h .37 m . G.M.T.) when a faint nebulous arch was 5° up. 'This was observed to be brighter at $20 \cdot 47$ and at 20.50 . The note at $20: 52$ is "Arch much brighter and more active. The lower border is of a reddish tint." Aurora, which one would suppose from the language employed to have been only moderately bright, was observed up to altitude of 14° or 15° at $21 \cdot 05$ (11h. 34 m . G.M.T.) and $21 \cdot 20$ (11h. 49 m . G.M.T.). Faint aurora was observed at 21.35 (12h. 4m. G.M.T.) and a " medium bright" arc up to 9° at 22.03 (12 h .32 m.) and 2220 (12 h .49 m . G.M.T.). No aurora was seen after this, but there was bright moonlight. The auroral characters assigned were 1.0 for 11 h., and 1.5 for 12 h : and 13 h . The magnetic characters were 1 for 11 h . and 13 h ., and 2 for 12 h .

There was a fair amount of magietic disturbance from 9 h .30 m . to 12 h .0 m .; but it was of rather a nondescript character, no two elements being at all in phase; In D. there were three distinct but not deep bays all E.W. with westerly extremes at about $9 \mathrm{~h} .40 \mathrm{~m} ., 10 \mathrm{~h} .18 \mathrm{~m} ., 11 \mathrm{~h} .12 \mathrm{~m}$. and 12 h .3 m ., and casterly extremes at about $9 \mathrm{~h} .55 \mathrm{~m} ., 10 \mathrm{~h} .38 \mathrm{~m}$. and 11 h .28 m . H fell from 9 h .45 m . to 10 h .10 m ., rose from 10 h .10 m . to 10 h .22 m ., fell from 10 h .22 m . to 10 h .40 m ., and rose from 10 h .40 m . to 11 h .25 m . The last was the largest movement. Towards the end of it, and subsequently until 11 h .50 m ., short period oscillations were somewhat more prominent. V showed no special disturbance until 10 h .30 m . Two bays then presented themselves, both + . The first extended from 10 h .30 m . to 11 h .5 m ., the second lasted
about an hour and was much the deeper. There were short period oscillations during both the bays in V, but of trifling amplitude. The aurora was brightest towards the end of what were the largest movements in D, H ard V . But the short period oscillations were of quite a trifling character, as compared for example with those recorded between 13h. and 14h. on June 8th. An idea of the comparatively minor character of the disturbance may be derived from the following particulars of the hourly ranges. The auroral characters are attached-

July 1, 1912, 23.17 (13h. 46 m . G.M.T.):-At the time of the earliest observation of the evening 19.50 (10 h .19 m .) no aurora was observed. The note at $23 \cdot 17$, when it was first recorded runs, "A powerful aurora is in operation. Curtain $\because \cdot \cdots$, 30° up.. Faint colour phenomenon . . . The display waned rapidly at $23 \cdot 29$ (i3h. 48m. G.M.T.). Bright moonlight reduced the brilliance, and only strong effects visible." At 23.23 (13 h .52 m . G.M.T.) the aurora was " no longer visible in the moonlight.". It was, however, seen at $23 \cdot 33,23 \cdot 50$ and $24 \cdot 00$ (14h. 29m. G.M.T.). but not later. The auroral characters awarded were 2.0 for $14 \mathrm{~h} ., 1.0$ for 15 h ., and 0.0 for' the subsequent hours. Magnetic character 2 was awarded to 14 h . and 15 h . All the other hours of the day from 8 h . to 24 h : obtained character 1 . The interval ' 13 h .' 20 m . to 14 h .30 m . was one of those selected for the comparison of Cape Denison and Cape Evans. During this time there was a well-marked bay E.W. in D of a very ordinary type, the beginning of which at about 13 h : 20 m . was more definite than the conclusion. The turning point at 13 h .40 m . supplied the most easterly reading of the day. Movements in H and V , force increasing, commenced practically simultaneously with the commencing movement in D. The turning points, at 13 h . 35 m . in H and 13 h .40 m . in V, supplied the maxima of the day. Short period oscillations, but of small amplitude, were present in all three curves during the time when the brightest aurora was noted. After attaining a maximum, H and V both fell pretty rapidly at first. The fall in H, however, was soon interrupted, and the subsequent movements were for a time rather irregular. The fall in V progressed rapidly until 14 h .0 m ., and it continued at a slower rate with some interruptions until nearly 14 h .25 m . V was then still a good deal higher than at 13 h .20 m . A second rise then set in and continued until about 14 h . 36 m . A decided tendency to fall then set in and continued until 16 h .0 m . when V had nearly the same value as at 13 h .20 m . During the second rise in V, and subsequently up to $14 \frac{1}{6} 50 \mathrm{~m}$., there were some fair movements in H ,

It will be óbseserved that the brightest aưorora was observêd a fêt miniutês sübséquënt to thë principal turning points which occurred in all three elements: From the appearance of the curves we can hardly avoid the conclusion thät thë movements following the turning points represented the second stage of a disturbance which commenced about 13 h .20 m . The inference we should naturâlly dräv is thiät thé àurora had been in existence for some little time béfore it wàs seeñ The aưuröă
 in. V.

July 5, 1912; 19.50 (10h. 19m. G.M.T.) et seq.-Earlier notices from 17.00 (7h: 29 m. G.M.T.) oñards inientioni aurorà. It was verry bright at 18.00 (8 h .29 m . G.M.T.) and 18.15 (8 h .44 m . G.M.T.). At 19.00 (9 h .29 m .) there was a bright curtain 10° up. The note at 19.50 runs, "An èxceptionally brilliant display. A curtain about 10° up . . . the lower edge of a definite reddish tinge:" Records of aurora go on at short intervals until after local midnight 14hi: 29\%. G.M.T., when the sky had becone largely overcast: Notes as to colour include the following : $20.05 \frac{1}{2}$ and 20.07 ($10 \mathrm{~h}: 38 \mathrm{~m} . \mathrm{G} . \mathrm{M} . T$.) " pink lower border;" $20 \cdot 10$ (10h. $41 \mathrm{~m}: ~ G . M . T:$) " sheets of lilac colour," 20.13 (10 h .44 m . G.M.T.) " lilac streamers," 20.39 (iih: 8 m . G.M.T: "pink below shạding into greèn tints above," 21:30 (ilh. 59 m. G:M:T.) "pink lower border;" $23 \cdot 10$ (13h. 39 m . G.M.T.) "very stron'g cirtains : . . colour showing," $23 \cdot 15$ (13h. 44m: G:M.T.) " an initense curtain showing brick-réd; rose-pink; lilac and greén tints:" Pink colour was also observed at 23.34 and at $23 \cdot 41$ (14h: 10 m : .G.M.T:). Auroral characters were awarded as follows :-8h. .i.5, $9 \mathrm{~h}: \underset{2}{2} \cdot 0$; $10 \mathrm{~h} .1 \cdot 5$; 11h. $2 \cdot 0,12 \mathrm{~h} .2 \cdot 0$, $13 \mathrm{~h} .1 \cdot 0,14 \mathrm{~h} .2 \cdot 0,15 \mathrm{~h}: 1 \cdot 5$. This and the subsequent day, Juily 6 ; were two of the five days which Sir Douglas Mawson mentions ass supplying the most remarkable colour effects. This aurora occurred during a time of most persistënt magnetic distürbance. From 17h. on July 3id to 6h. on July 6th ëvëry single liouir was awarded miagnetic character 2 , with the exception of 7 h. on the 5 th, which got a 1. July: 5th was alsö persistently disturbèd at Cape Evans; but during thee hours -when aurora was observed at Cape Denison no interval presented itself which seemèd fitted for the intercomparison of the two stätions. The movements at Cape Denison wère in general of a very irregular character, and the different elements weire not in phase. There was little in the general äppearance of the curves to suggest one interval of time as more appropriate for measurements than another. Houirly ranges were accordingly measured with the following results, the auroral charactêrs being added for comparative purposes.

July 6; 1912, 06.55 (July 5th, 21 k .24 m . G.M.T.).-It would appear that prior to this frequent observations had been taken without detecting aurora. Conditions, however, were .unfavourable, as there was bright moonlight, while much of the sky was overcast. The note at $06 \cdot 55$ runs, "A curtain 7° up pinkish and greenish colours visible." Aurora was also seen though apparently faint at $07 \cdot 00$, $.07 \cdot 04,07 \cdot 07$ and $07 \cdot 14$ (21 h .43 m . G.M.T.), but it was invisible at $07 \cdot 21$. It was again seen at $07 \cdot 30$ (2 lh .59 m. G.M.T.), $07 \cdot 35$ and $07 \cdot 45$ (22 h .14 m . G.M.T.). On the two last occasions it was in or near the zenith. It was invisible at $07 \cdot 49$, but at $07 \cdot 58$ (22 h . 27 m . G.M.T.) a faint curtain reached to the zenith. No further observation was made in view presumably of tivilight. The auroral characters assigned were 1.5 for 22 h . and 1^{10} for 23 h . As already explained, a long sequẹnce of hours including 22 h . and 23 h . were of magnetic character 2 . As compared with the immediately preceding hours, disturbance was enhanced between 21 h. and 22 h . at least in D and V.. The hour was one of those selected for the comparison of Cape Denison and Cape Evans. A sharp movement started almost if not quite simultaneously in the three elements, a minute or two after 21h. It was to the west in D, and was a fall in both H and V : The turning point (minimum) in H was reached about 21 h .22 m . near the time when aurora was brightest. It was reached a few minutes later in V and D. What happened close to the turning point in D is doubtful. The appearance of the curve suggests: that some obstacle held up the magnet for some minutes. The return movements, to the east in D, and representing increase of force in H and $\hat{V}_{\text {a were }}$ larger in D and V than the commencing; movements...The resulting bays are in the case of H and V sharply terminated at about 2 h . 45 m . But the D movement continued up to 22h., though at a slower rate. . The appearance of the curve suggests that the entire bay forms a disturbance of definite source. If so, it would appear that the conditions first detected as aurora at $21 \mathrm{~h}: 24 \mathrm{~m}$. must have then been in existence for fully twenty minutes. Short period oscillations were not at all prominent between .21 h . and 22 h . Though aurora was seen at 22 h .14 m . and 22 h .27 m .; magnetic conditions were a good deal quieter between 22 h . 0 m . and 22 h . 30 m . than they had been for a good many hours. A rapid westerly movement in D began at 22h. 30m., a change of $2^{\circ} 25^{\prime}(132 \gamma)$ taking place in about fourteen minutes." This was followed by a larger but somewhat slower easterly movement terminating about 23 h .25 m . The resulting bay in D closely resembles that experienced between 21 h . and 22 h . The aurora seen at 22 h .27 m . may possibly have continued during this second bay, though invisible on account of twilight.

July 6, 1912, $18 \cdot 40$ (9h. 9m. G.M.T.) et séq.-This was one of the five occasions of specially brilliant colour effects particularised by Sir Douglas Mawson. Aurora of varying intensity had been observed at intervals since 16.05 ($6 \mathrm{~h} ~ 34 \mathrm{~m}$ G.M.T.). Every observation taken since $16 \cdot 19$ (6h. 48 m . G.M.T). had shown it, though it was "almost gone" at $17 \cdot 26$ ($7 \mathrm{~h} .55 \mathrm{~m} . \mathrm{G}$. M.T.). The note at $18 \cdot 40$ runs, "An arch $10{ }^{\circ}$ up : : . \cdots of a faint reddish colour" While this was apparently the earliest

[^5]observation of colour, later occurrences would seem to have been a good deal brighter, judging by the following notes : $-20 \cdot 43$ (11 h .12 m . G.M.T.)" " A brilliant arch . . . reddish lower border," $20 \cdot 46$ and $20 \cdot 48$ "lilac colour," $20 \cdot 50$ (11 h . 19 m . G.M.T.) "colour rose to lilac,", 21.06 (11 h .35 m . G.M.T.). "Brilliant lilac coloured curtains," $21 \cdot 26$ (1lh. $55 \mathrm{~m} . \mathrm{G} . \mathrm{M} . \mathrm{T}$.$) . "A vortex of colour and motion crossed the zenith."$ Aurora continued to be recorded at every observation until local nidnight (14 h .29 m . G:M.T.). At several observations times in the early morning it was invisible, but it then revived and was recorded at every observation time from 04:15 (18h. 44m. G.M.T.) to $07 \cdot 40$ (22 h .9 m .), when it was overpowered by twilight. Red or pink colour was noticed at $04 \cdot 36$ (19 h .5 m . G.M.T.), $04 \cdot 43 \frac{1}{2}$ and $05 \cdot 15$ (19h. 44 m . G.M.T.). The auroral characters awarded were 2.0 for $12 h$. and $20 \mathrm{~h} ., 1.5$ for 13 h ., 19 h. and 2 h ., 1.0 for 7 h . to 10 h ., 14 h ., 15 h ., 22 h . and 23 h ., 0.5 for 11 h . and 16 h ., and finally 0.0 for 17 h . and 18 h . Magnetic character was 1 from 7 h . to $11 \mathrm{~h} ., 2$ from 12 h . to 15 h ., 1 for 16h., and 2 for 17 h . to 23 h .

If preceded by a quiet time, hours 7 h . to 11 h . might have been assigned 2^{\prime} 's, but the disturbance during them was active rather than large. Subsequently, except from 15 h . to 16 h ., the movements were larger, but if we except 11 h .0 m . to 13 h .0 m . disturbance was active rather than great. The movements between 11 h . and 13 h . were very làrge, and between 11 h .30 m . and 12 h .30 m . they were very highly oscillatory. The H and V instruments at this time, were more than usually sensitive, and both traces got off the sheet. The two D traces also got off the sheet, and for a time near '12h. it is doubtful whether either of them was on the sheet. Owing to the rapidity of the movements, the traces were very faint, and there are apparently discontinuous portions of curve which might represent either D trace or V trace, or partly both. If these were V trace, the daily range in V was greater than that given in Vol. I*, while if they were D trace it was the daily range in that element which was underestimated. The measurement given below assume them to be D trace. It is thus possible that the ranges assigned to that element for 12 h . and 13 h . may be overestimates ; the ranges for the other two elements for these two hours are in any case underestimates. The results are as follows; the auroral characters being added for comparative purposes.

-Hour ending at..:	7h.:	8h:	9 h.	10h.	11h.	12h.	13h.	14h.	15h.	16h.	17h:	18h.	19 h.	20h.	21 h.	22h.	23 h .
	γ	γ.	γ	γ	γ	γ	γ	γ	γ	\bigcirc	γ	\bigcirc	γ	γ	γ	γ	γ
Hourly range D	25	14	9	15	24	289	149	19	28	26	73	41	61	63	50	63.	46°
Hourly range H	28	14	18	18	13	498	500	23	21	18	24	30	67	48	31	58	47
Hourly range V	27	7	11	16	15	295	117	117.	39	17	34	28	59	91	31	64	67
Auroral character	1.0	1.0	1:0	1:0	0.5	$2 \cdot 0$	1.5	1.0	1.0	0.5	$0 \cdot 0$	0.0	1.5	2.0	1.5	1.0	1.0

July: 7, 1912, 04.36 (July 6, 19h. 5m. G.M.T.)' et seq.-As this fell in the same Greenwich day as the previous occurrence, the two have been discussed together above They were presumably parts of the same exhibition.

August. 6, 1912, 17.00 (7h. 29m. G.M.T.)--The earliest note of the evening at 16.30 (6 h. 59 m. G.M.T:) recorded " a bright curtain seen in daylight 4° up .". \quad " The note at $17 \cdot 00$ was, "Ditto, but more intense. The colour appears yellowish to pinkish green, probably apparent colour affected by the daylight." This seems the only reference to colour. There are numerous observations of aurora throughout the night up to 06.28 (20 h .57 m . G.M.T.). At three of the times of observation aurora was invisible, but there is no (Greenwich) hour from 7 h . to 21 h . in which it was not seen. The auroral characters awarded were 2.0 for $7 \mathrm{~h} ., 8 \mathrm{~h}$., 10 h ., and $11 \mathrm{~h} ., 1.5$ for $9 \mathrm{~h} ., 12 \mathrm{~h}$., 13 h ., 14 h . and $16 \mathrm{~h} ., 1 \cdot 0$ for 15 h . and for 17 h . to 21 h . The magnetic character was 2 from 4 h . to 9 h . inclusive, and 1 from 10 h . to 17 h . inclusive. It was 0 for 18 h . and 21 h ., but 1 for 19 h . and 20 h .

There were some considerable movements, but none of any great rapidity, and short period oscillations were in no way conspicuous. Of the larger movements the one which makes most appeal to the eye is a bay E.W. in D , and -+ in H and V , lasting in D from about 6 h .30 m . to 8 h .0 m . It commenced some ten minutes later in H and V , and its conclusion in these two elements is indefinite. The ranges in the course of the $1 \frac{1}{2}$ hours were 223γ in $\mathrm{D}, \mathrm{r} 180 \gamma$ in H and 72γ in V . The corres-: ponding Cape Evans trace was, unfortunately, missing, so that a comparison was impossible. Subsequently there was what might be regarded as a very prolonged bay E.W. in $\ddot{\mathrm{D}}$, lasting from about $8 \frac{1}{2} \mathrm{~h}$ to 15 h . The H and V movements during this time do not make much appeal to the eye, but the value of. H increased fairly steadily, up to 14 h ., the mean value for that hour exceeding the 8 h . mean by 77γ. Much the, most conspicuous movement during the remainder of the time when aurora prevailed was a bay W.E. in D from about $1.7 \frac{1}{2} \mathrm{~h}$. to $19 \frac{1}{2} \mathrm{~h}$. The ranges during the interval. were 99γ in $\mathrm{D}, 32 \gamma$ in H and 77γ in. V. There was a fair bay +- in V, but it. commenced half an hour later than the bay in D.

The coloured aurora occurred during the progress of the first and largest bay movement, but no special oscillations accompanied it. The auroral display durng the time of the later bay was seemingly faint rather than bright. Hourly ranges were measured with the following results, the auroral characters being added for comparative purposes.

Augist 21, 1912, 20.20 (10h. 49 m . G.M.T.).-The only earlier observation of the night taken at 18.00 (8 h .31 m . G.M.T.) reported merely the existence of bright moonshine. The note at $20 \cdot 20$ was." A bright nebulous arch 5° up . : . Colour bright yellow with' a pink lower edge." A curtain 8° up was noted at 20.48 (11 h .17 m . G.M.T.). No aurora was visible at $21 \cdot 11$ (111h. 40 m . G.M.T.) or at several later hours, but the sky had become misty. The auroral characters awarded were 1.5 for 11 h. and 1:0 for 12 h . Magnetic character 1 was allotted to these two hours, and to several other hours immediately before and after them. But in assigning these character figures attention had been mainly directed as was usual to the H and V traces. The D. trace contained a fairly prominent bay of long duration extending from about 9 h. to 15 h . The turning point of this at 11 h .2 m . supplied the extreme easterly reading of the day. The portion of D trace from 10 h .30 m . to 12 h .0 m . formed as it were a bay within a bay, which included both the times when aurora was observed. The ranges during this period of $1 \frac{1}{2}$ hours were D. $56 \gamma, \mathrm{H} .24 \gamma, \mathrm{~V} .39 \gamma$. The amplitude was thus very moderate, and short period oscillations were not prominent.

September 12, 1912, $20 \cdot 26$ (10h. 55m. G.M.T.).-The two earliest observations of the evening at 18.00 and 19.55 (10 h .24 m . G.M.T.) disclosed no aurora, which was first observed at 20.05 (10 h .34 m . G.M.T.). The note at 20.26 runs, "Two bright árches with streamers 5° up . . \quad. faint reddish tint below." Aurora was noted at all the subsequent observations up to $00 \cdot 45$ (14 h .14 m . G.M.T.), but all at low altitudes and mostly faint. No aurora was seen at $01 \cdot 30$ (15 h .59 m . G.M.T.) or $02 \cdot 15$ (16 h . 44 m. . G.M.T.), though the sky was clear, but a faint glow was seen $03: 00$ (17 h .29 m . G.M.T.). The auroral characters awarded were 1.5 for 11 h . and 12 h , 0.5 for 13 h , and 10 for 14 h . to 16 h . The magnetic characters awarded were 2 for 11 h ., l for 12 h : tolyh, and 0 for 16 h . Previous to the aurora, from 5 h . to 10 h ;, the magnetic character had been 1. The only prominent feature in the curves is a bay EW in \mathbf{D}, + - in H and V, which supplied the extreme easterly reading of the day in \mathcal{D} at: 10 h .50 m ., and the maxima for the day in H and V at 10 h .50 m . and 10 h .58 m . respectively:. The bay may be regarded as extending from 10 h .30 m . to 12 h .0 m ., an intervall selected for the comparison of Cape. Denison and Cape Evans. The principal part of the change in all the elements cccurred, however, in about 27 minutes; from about 10 h .47 m . to 11 h .14 m ., the movements during that interval constituting a bay within a bay. Their range was $71 \dot{\gamma}$ in $\mathrm{D}, 37 \gamma$ in H, and 48γ in V. This secondary bay includes the time of the brightest aurora. It contains some rapid oscillations, but of a very minor character. There is nothing in the appearance of the H . and V. curves after 12 h . which suggests the existence of any special cource of disturbance. The movement in the declination magnet to the west between 12 h . and $15 h$. , as derived from the mean hourly values, was fully twice as great as in the average day of the month, but it presented no special features.

September 18, 1912, $21 \cdot 20$ (117. 49m. G.M.T.) et seq.-At the earliest observation hour 20.00 (10 h .29 m . G.M.T.) no aurora was seen. It was first observed at 21.09
(11h. 34 m. G.M.T.) when a bright curtain waxing and waning attained an altitude of 15°. The note at $21 \cdot 20$ runs, "The display is now very bright and active and shows colour . : : In eight minutes the curtain rose from 15° to $50^{\circ} .!$ At $21 \cdot 25 \frac{1}{2}$ ($11 \mathrm{~h} .54: 5 \mathrm{~m}$. G.M.T.) "A coronal vortex in the zenith." is reported. At $21 \cdot 30$ (11h. 59m. *G.M.T.) "The curtain now reached a maximum southerly position about 10° south of the zenith:" The aurora seems to have remained bright until 21.50 (12 h . 19 m. G.M.T.). But at 21.57 there was only a small curtain and at $22: 03$ (12 h .32 m . G.M.T:) only a nebulous glow 10° up. No aurora was seen later than this, but there was moonlight, which might have obscured faint effects; and later the sky became overcast: The auroral characters awarded were $11 \mathrm{~h} .0: 0,12 \mathrm{~h}: 2.0,13 \mathrm{~h} .2 \cdot 0 ; 14 \mathrm{~h}, 0.0$. The magnetic characters were 1 for the hours preceding the aurora, 2 for 12 h : and 13 h ; and 1 for the four subsequent hours:

This is one of the five occasions specified by Sir Douglas Mawson as presenting the most remarkable colour effects. According to the note on his p. 66, "The display was almost next to the great one of early July. The corona effect at the zenith as the curtain passed over was well illustrated. The colour was chiefly rosepink and emerald green : . . At times the general outline of the curtain was . : . repeatedly traversed by waves of excitation kindling it. successively from west to east with a brilliant light.".

This' would seem to have been a sharply defined isolated occurrence of aurora; and it was accompanied by magnetic disturbance, whose commencement a little before 11 h .30 m . is sharply defined in all the elements. The interval 11 h .20 m . to 12 h .50 m . which includes all the notable movements was one of those selected for the comparison of Cape Denison and Cape Evans. The traces at Cape Evans from 0h. to 14 h: appear in Plate LVII of the volume devoted to that station. At Cape Denison the commencement may be püt at llh. 27m., the commencement movement being to the east in D, and a rise in H and V. It brought D to the extreme easterly position of the day at 11 h .40 m ., and H simultaneously attained its maximum value for the day. From 11 h .40 m . to 12 h .10 m . the traces were all considerable oscillatory. One of the oscillations brought D at 11 h .50 m . to a position more westerly by 40° than the position existing at the beginning of the disturbance, and another brought H at 11 h .58 m . to the minimum value for the day. After these extreme positions were attained further oscillations brought D to the east of its undisturbed position, and enhanced H temporarily above its original value. Thus the disturbance in D and H were not simple bays, though initially of the bay type. The V trace also experienced rapid oscillations between 11 h .40 m . and 12 h .10 m. , but; the principal movement was an increase of force which brought V to its maximum for the day at about 11 h .55 m . The oscillations left. V considerably enhancedi above its initial: value, and the fairly rapidi fall which went on until 12 h .30 m . completed a disturbance which may fairly be regarded as of the ordinary bay type. . It will be noticed that the most oscillatory:
time in the magnetic elements included the time when the most outstanding auroral. effects were observed. But the oscillations, though decidedly exceptional, were poor compared with those observed on July 6 between $11 \frac{1}{2}$ h. and 12h., and on June 8 between $13 \frac{1}{2} \mathrm{~h}$. and 14 h ., and on May 5 between $11 \frac{1}{2} \mathrm{~h}$. and 12 h .

October 15, 1912, 22.02 (12h. 31 m . G.M.T.).-The earliest observation of the evening at 21.58 reports a curtain 10° up. The note at 22.02 runs , "The curtain extends and brightens, rising to 15°. . . A reddish colouration appears on the lower border." A'" faint reddish colour" was also observed at 22.10 , and a "flash of red and green"" at $22 \cdot 15$. Fainter aurora was obsorved at $22 \cdot 18$ and at $22 \cdot 36$ (13 h . 5 m. G.M.T.), but none was visible later.' It is explained, however, that " during this display medium moonlight and considerable twilight prevailed."

The auroral characters awarded were 1.5 for 13 h ., and 1.0 for 14 h . Hours 12 h . to 15h. got magnetic character 2 , and the three following hours magnetic character 1.

This would seem to have been a short isolated appearance of aurora. There was considerable magnetic disturbance, some of it decidedly oscillatory, both earlier and later in the day, but the aurora was presumably associated with a somewhat prominent disturbance, which in the case of H and V took the shape of a simple bay + -, commencing shortly after 12 h . and finishing about 13 h .30 m . During the same time there were three prominent movements in D , to west, to east, and to west again. The interval 12 h .0 m . to 13 h .30 m . was one of those selected for the comparison of Cape Denison and Cape Evans. \therefore Plate LX of the volume devoted to Cape Evans reproduces a portion of the traces of October 15, but refers to hours prior to the appearance of aurora at Cape Denison. The D, H and V curves at Cape Denison all show short period oscillations about the time when the aurora was observed, but they are of a triffing character.

October.17; 1912, $21 \cdot 45$ (12h. 14m. G.M.T.).—Aurora was reported at the earliest observation hour of the evening $21 \cdot 40$ (12h. 10 m . G.M.T.)' when there was a nebulous $\operatorname{arch} 14^{\circ}$ up. The note at $21 \cdot 45$ runs, "The arch has risen to 20°. \because. A faint reddish tinge on the lower border; considerable twilight." The presence of aurora was noted at intervals up to $22 \cdot 30$ (12 h .59 m . G:M.T.). None was seen at $22 \cdot 45$ (13 h . 14 m . G.M.T.), or at the later hours of observation. Auroral character $1: 5$ was assigned tc 13 h ., the adjacent hours receiving character $0 \cdot 0$. The magnetic characters assigned were 2 for $11 \mathrm{~h} ., 1$ for 12 h . and $13 \mathrm{~h} ., 0$ for 14 h . to 17 h . During the time when aurora was seen a fairly active westerly movement was in progress in D , but the character of the H and V curves was rather 0 than 1 . The appearance of the curves between 12 h . and 13 h . is not at all suggestive of the presence of any special cause of disturbance, while the appearance of the curves between 10 h .30 m , and. 12 h , decidedly is so.

May 1, 1913, $21 \cdot 15$ (11h. 44m. G.M.T.).--The magnetic traces for this day are missing.

May 5, 1913, $20 \cdot 15$ (11h. 44m. G.M.T.).-Aurora had been seen earlier in the evening at 18.00 (8 h .29 m. G.M.T.), but none was visible at 19.34 (10 h .3 m). . The note at 20.15 mentions "A broad, bright . : . nebulous arch with a reddish lower border . . . reaching 6° in elevation." At $20 \cdot 20$ the arch had risen, and a streamer curtain reached to 40° above the horizon. Aurora was reported at each subsequent observation time until local midnight (14h. 29m. G.M.T.), when the sky became obscured. The auroral characters awarded were 1.0 for 9 h ., 0.0 for 10 h ., 1.5 for $11 \mathrm{~h} ., 1.0$ for $12 \mathrm{~h} ., 13 \mathrm{~h}$. and 14 h , 0.5 for 15 h . Every hour from 9 h . to 15 h . got magnetic character 1 except llh., which gọt a 2.

The most noteworthy disturbance during the hours when aurora was seen was a bay, E.W. in D, which commenced a few minutes before 10h. and ended about 11 h . Neither this nor the corresponding H and V traces was at all remarkable for short period oscillations. Hourly ranges were measured with the following results, the auroral character being added for comparative purposes.

The hour ending at 8 h ., which represents the largest ranges included only one observation taken at 7 h .59 m , at which no aurora was seen. It may be remarked as a coincidence that specially bright aurora was also observed on the same date of the previous year.

June 11, 1913, 22.54 (13h. 23m. G.M.T.).-The earliest observation of aurora was at 20.12 (10 h .41 m. G.M.T.). It was also scen at 21.05 (11 h .34 m .) and 22.07 (12 h .36 m .), but was invisible at 20.52 (11 h .21 m .) and $2 \mathrm{l} \cdot 45$ (12 h .14 m. G.M.T.). It continued to be seen at each subsequent observation until 00.20 (14 h .59 m .), after which it waș invisible for several hours. The note at 22.54 runs, " A bright curtain with a tinge of red below . . ." The auroral characters awarded were 0.5 for 11 h ., 1.0 for 12 h . and 13 h ., 1.5 for $14 \mathrm{~h} ., 1.0$ for 15 h . and 0.0 for the next three hours. Magnetic character 1 was, awarded to 13 h : and 14 h . All the other hours of the day subsequent to 6 h . were of character 0 .

The day as a whole was an exceptionally quiet one, twenty hours out of the twenty-four being of character 0 , and none of character 2. But during the time of the aurora, the H and V traces showed two very regular bays, in immediate succession to one another, the two elements appearing' to be almost exactly in phasé: A trace of a third very shallow bay following immediately on the other two can also be made
out. The bays are all + - , i.e., the rise of force comes first. Turning points which were (temporary) maxima and minima being distinguished as + , - , the following are appropriate times:-

$$
\begin{aligned}
& \text { Turning points- } \\
& \text { H } \ldots \ldots . . .12 \mathrm{~h} .29 \mathrm{~m} .(-), 12 \mathrm{~h} .52 \mathrm{~m} .(+) \text {, } 13 \mathrm{~h} .12 \mathrm{~m} .(-), 13 \mathrm{~h} .30 \mathrm{~m} .(+), 14 \mathrm{~h} .5 \mathrm{~m} .(-), 14 \mathrm{~h} .40 \mathrm{~m} .(+) \cdot \\
& \text { V } \ldots \ldots \ldots .12 \mathrm{~h} .27 \mathrm{~m} .(-), 12 \mathrm{~h} .52 \mathrm{~m} .(+), 13 \mathrm{~h} .12 \mathrm{~m} .(-), 13 \mathrm{~h} .30 \mathrm{~m} .(+), 14 \mathrm{~h} .15 \mathrm{~m} .(-), 14 \mathrm{~h} .40 \mathrm{~m} .(+) \text {. }
\end{aligned}
$$

The recovery (fall) constituting the second part of the third bay was indefinite. That bay appeals to the eye more as a check than as a reversal of the regular change in progress at the time. The turning points at 12 h .52 m . in V and at 13 h .30 m . in H , supplied the maxima of the day:

From the start up to 13 h .12 m . the D trace was closely in phase with the other two: The commencement may be put at 12 h .25 m ., or at 12 h . 31 m ., representing a westerly (W.) turning point. The next turning point at 12 h .48 m . represented the easterly extreme of the day. Instead, however, of a turning point at 13 h .12 m .; we have the westerly movement continuing until 13 h .30 m . A comparatively small movement to the east then followed, leading to a turning point (E.) at about 13 h .38 m . The westerly movement which followed went on until nearly 14 h . 30 m . At 13 h .30 m . D was still a good deal to the east of its original position. Thus the D trace from 12 h .30 m . to 14h. 30 m . may be regarded as supplying two successive bays, the one ending and the other beginning at 13 h .30 m ., or as a single irregular bay. After 14 h .30 m . there was a temporary reversal or check of the westerly movement in $\overline{\mathrm{D}}$, corresponding apparently to the third bay suggested by the H and V traces. The fairest idea of the amplitude of the movements accompanying the aurora seems obtainable from a subdivision of the whole time of the disturbance into three parts, as follows :-

The brightest aurora occurred during the second period, which answers to the second bay in H and V. At the times of the two earliest observations of aurora 10 h .41 m : and 11 h .34 m . G.M.T. only the most trifling magnetic movements were in progress.

June 19, 1913, $23 \cdot 16$ ($13 \mathrm{~h} .45 m$, G.M.T.) et seq.-Observations up to 22.00 (12 h . $29 \mathrm{~m} . \mathrm{G}:$ M.T.) reported no aurora; but bright moonlight. At $22 \cdot 30$ (12h. 59 m. G.M.T.), however, a nebulous band 8° up is reported, and at 23.04 (13 h .33 m. G.M.T.) "a very brilliant curtain reaching as high as the zenith." The note at $23 \cdot 16$ runs, "A very great exhibition near the zenith. The main band 70° up showing colours and a . swirling motion along it." At 23.22 (13 h .51 m . G.M.T.) the aurora was "rapidly waning," and at 23.25 and 23.38 (14 h .7 m . G.M.T.) it was faint at a low altitude. It was invisible at 24.00 (14h. 29m. G.M.T.). At 00.33 (15h. 2m: G.M.T.), however, a
bright arch up to 12° with a reddish tint was reported. At the next obscrvation time $01 \cdot 00$ (15h. 29 m. G.M.T.) the arch was much fainter, and observations from $01 \cdot 30$ (15 h .59 in . G.M.T.) onwards reported no aurora visible. The auroral characters awarded were 1.0 for 13 h ., 2.0 for 14 h ., 1.0 for 15 h . and 1.5 for 16 h . The magnetic characters were 0 for 12 h . and 13 h ., 2 for $14 \mathrm{~h}, 1$ for 15 h . and 16 h .; and 0 for 17 h . and 18 h .

The aurora would seem to have been a comparatively short isolated one, confined to the time $12 \frac{1}{2} \mathrm{~h}$. to 16 h ., and the time of exceptional brilliancy is not known to have exceded twenty minutes, ending before 13 h .5 lm . A note explains that the maximum might have preceded 13 h . 33 m ., as an interyal of 34 m . had elapsed since the last previous observation.

What the magnetic curves show is a quiet time extending from l1h. to 13 h , then a disturbance which began at about 13 h .3 m . in H and V with a sharp rise of force, and went on to about 14 h .30 m . There were considerable oscillations between $13 \mathrm{~h} . \mathrm{C} 20 \mathrm{~m}$. and 13 h .55 m . After 13 h .55 m . the H and V traces were very smoth, though a considerable change took place in V. The disturbance was simplest in the V trace, which shows a single bay + , the turning point at 13 h . 35 m . supplying the maximum for the day. Short period oscillations appear on the V trace from. 13h. 20 m . to 13 h .40 m ., but they are comparatively small. Initially there was a smart rise in H , as in V , and it led to the maximum for the day at. 13 h .12 m . . After being nearly stationary for some minutes, H began to fall, but-oscillations then set in and continued until about. 13 h ... 55 m . At that time, H was higher than it was originally at 13h. . But the oscillations after 13 h .30 m ., which were much larger in H than in V , were mainly in the negative side, and supplied at 13 h .48 m . the minimum for the day. After $13 \mathrm{~h} .55 \mathrm{~m} ., \mathrm{H}$ began to fall smoothly, but the fall was slower than in V and stopped earlier. The disturbance in D is in its general features a bay E.W., which supplied at about 13 h .40 m . the extreme easterly reading of the day. But superposed on the bay movement were rapid oscillations, which though not large absolutely were considerable as compared with the amplitude of the bay. One of these oscillations brought D at about 13 h .33 m . a considerable distance to the west of its initial position. The return movement to the east produced in five minutes a change of 55^{\prime} in D. These rapid changes in D were synchronous with the brightest time of the aurora.

The ranges from 13 h .0 m . to 14 h .30 m. , which covers the time during which the aurora was continuously visible, and also the time of active magnetic disturbance, were D 49γ, H. 94γ and V 101γ.

Subsequently there were what might be regarded as trifing bays + - in H and V , from say 15 h .0 m . to $15 \mathrm{~h}, 30 \mathrm{~m}$, which includes the two last auroral observations. The ranges during this balf-hour were $\mathrm{D} 16 \gamma, \mathrm{H} 11 \gamma$ and $\mathrm{V} 13 \gamma$.
\# 2032-Q

July 7, 1913, 23.08 (13h. 37 m . G.M.T.) et seq.-First seen at 17.24 (7h. 53 m . G.M.T.) aurora was reported at every subsequent time observation, with one exception up to $02 \cdot 00$ (16 h .29 m . G:M.T.), after which time it was invisible for several hours. The exceptional intcrmediate occasion when aurora was invisible was 20.54 (11 h .23 m . G.M.T.). It became visible again only five minutes later, thus it would seem to have been practically continuous during $8 \frac{1}{2}$, hours. The earlier observations up to $20 \cdot 39$ (11h. 8 m. G.M.T.) describe the aurora as faint or very faint, but in general it attained considerable altitudes, being in the zenith at $20 \cdot 19$ (10h. 48 m . G.M.T.). From 21.54 ($12 \mathrm{~h} .: 23 \mathrm{~m}$. G.M.'T.) to 22.43 (13 h .12 m. G.M.T.) it is described as moderately bright, but its altitude was then only 12° or less. At $22 \cdot 53$ (13 h .22 m . G.M.T.) it is described as bright; but the altitude was only 4°. The note at 23.08 rins, "A. long bright curtain maximum elevation 25°, much motion at the E end where it is red below." At 23.12 (13h. 41m. G.M.T.) it was "very bright again; red below . . . maximum elevation 35°. At $23 \cdot 15$ it was " again very brilliant and much colour" and hàd "risen somewhat higher." $\cdot 23 \cdot 18$ (13h. 47 m . G.M.T.) was " another bright period . : . colour effects pinkish . . . greenish . . ." Other times of special brilliancy were $23 \cdot 20 \frac{1}{2}$ and $23 \cdot 26 \frac{1}{2}$ (13h. $55 \frac{1}{2} \mathrm{~m}$. G.M.T.). It had become much fainter by 23.29 (13 h .58 m . G.M.T.), and subsequently was faint or very faint. On one ócasion $01 \cdot 30(15 \mathrm{~h} .59 \mathrm{~m}$.), though very faint, it was in the zenith.
T......The auroral characters awarded were 1.0 from 9 h . to $12 \mathrm{~h} ., 1.5$ for $13 \mathrm{~h} ., 2.0$ for 14h., 1.0 for 15 h . and $16 \mathrm{~h} ., 0.5$ for 17 h . and 0.0 for 18 h . and 19 h .
$\therefore \cdots$ The magnetic characters were 1 for $9 h ., 0$ for $10 h ., 11 h$. and $12 h ., 1$ for $13 h$. , 2 for 14 h :, 1 for 15 h ,, and 0 for 16 h . to 19 h .

There was minor disturbance from midnight to 4 h., before aurora was seen, and. again from 20 h . to 24 h ., but during the intermediate part of the day it was generally', veiry quiet, except from 12 h . to 15 h ., when the disturbance was very moderate. The ranges for the day as a whole were only $56^{\prime}(50 \gamma$) in $\mathrm{D}, 47 \gamma$ in H and 90% in V. The V range is slightly above the mean for the month, but the D and H ranges are well below. The magnetic character assigned to the day as a whole was 0 , and the international character $0: 4$.

The disturbance between 12 h . and 15 h . was of the simplest type in V , where i consisted of two bays, the first cxtending from about 12 h .15 m . to 13 h . 15 m ., the second and dieeper from 13h. 30 m . to 14 h .20 m . The bays were both +- . The + turning point on the second at $13 \mathrm{~h}, 58 \mathrm{~m}$. supplied the maximum for the day. It coincided practically with the termination of the brightest auroral period.

During the earlier bay in V there was the suggestion of a very shallow +bay in H and there was a fair E.W. bay in D , the turning point in which at 12 h .43 m . supplied the extreme easterly reading for the day.'

During the time of the second bay in V there was first a small rise in H to the maximum for the day at 13 h .37 m ., then a fall, with trifling short period oscillations superposed, to the minimum for the day at 13 h . 55 m . This was followed by a rise and some irregular movements, the movement immediately preceding 14 h .20 m . being a slight fall. The corresponding D disturbance was similarly irregular: The motion was on the whole easterly to 13 h .42 m ., westerly to $13 \mathrm{~h} . \ddot{5} 5 \mathrm{~m}$., easterly to 14h. 2 m . and finally westerly. The most conspicuous movement was that to the east between 13h. 55 m . and 14 h .2 m . The disturbance in D and H between 13 h . 30 m . and 14 h .20 m . might be regarded as composed of two bays, the first ending and the second beginning at 13 h .55 m .; the first was the more oscillatory period, but absolutely considered were small. The ranges during the times covered by the two bays in V were as follows:-

\cdot			
Interval.	Ranges.		
-	D	H	V
	25γ	${ }^{0}{ }_{Y}$	16γ
13 h .30 m . to $14 \mathrm{~h} .20 \mathrm{~m}$.	${ }^{20 \gamma}$	${ }^{47} \gamma$.	52γ

While the magnetic disturbance accompanying the brightest aurora had sufficient individuality to catch the eye, the fact that it did so was largely due to the general quietness of the curves during adjacent hours. No one, I think, who regarded brilliant gurora and large magnetic disturbance as invariably associated would have suspected from the appearance of the curves that anything very exceptional in the way of aurora had been going on.

July 10, 1913, $22: 53$ (13h. $22 m$ G.M.T.) --Faint aurora. was reported at $\mathbf{1 6 4 3}$ (7 h .12 m . G.M.T.), but it was not:seen again until $21 \cdot 35$ (12 h .4 m . G.M.T.), when there was a "faint nebulous band 2°. up . . " At 22.00 (12 h .29 m . G.M.T.) there was "a bright nebulous arch " 16° up. At the next two observation times, $22 \cdot 15$ and $22 \cdot 25$, its altitude was greater, but it was apparently less bright. The note at 22.53 runs, "A bright nebulous band 35° up . . . shows a tinge of red below in places." Aưrora was subsequently reported at intervals until 03.23 ($17 \mathrm{~h}, 52 \mathrm{~m}$. G.M.T.), being apparently bright or moderately bright up to 02.03 (16 h .32 m . G.M.T.), and subsequent to that faint or very faint. It was invisible at $04 \cdot 17$ (18 h .46 m : G.M.T.)

The auroral characters awarded were $0: 0$ from 9 h . to $12 \mathrm{~h} ., 1 \cdot 5$ 1or 13 h . to 17 h ., 0.5 for 18 h . and 0.0 for 19 h . The magnetic character was 1 for $10 \mathrm{~h} ., 13 \mathrm{~h} ., 14 \mathrm{~h} ., 15 \mathrm{~h}$. , $17 \mathrm{~h} ., 18 \mathrm{~h}$. and 19 h. , and 0 for $9 \mathrm{~h} ., 1 \mathrm{lh}$. 12 h : and 16 h .

Throughout the time of this aurora the V trace was faint and almost invisible in places. No bays or oscillations of any size were visible. Neither the D nor the H trace shows any single large movement throughout the whole day, and it was awarded a daily character 0 ; but it was definitely unquiet during most of the time
when aurora was seen. The V trace appeared unsuitable for the measurement of hourly ranges, but the D and H traces were measured with the following results, the auroral character being added for comparative purposes.

Hour ending at-	12h.	13h.	14h.	15h.	16h.	17h.	18h.	19h.
	γ	Y	γ	γ	γ	γ	γ	γ.
Hourly range D	13	27	15	15	17.	14	10	12
Hourly range H..	11	13.	15	15	8	12	15	12
Aurorel character	. 0.0 .	1.5	1.5	1.5	1:5	1.5	0.5	$0 \cdot 0$

When short period oscillations are small, as they were in the present case, their presence may not add much to the hourly ranges. It has also to be remembered that in July the regular diurnal variation is near its minimum. Thus the comparison of the above with similar previous data may suggest the influence of the aurora was less than it actually was. Still, making every allowance, it must be conceded that the magnetic disturbance was of a very trifling nature.

The most regular part of the disturbance in H was a succession of three bays + - between 17h. and 181 h ., each lasting about half an hour. Aurora was certainly present during the two first beys, but whether it was present during the third bay it is impossible to say, as no observation was taken until after it was over.

Sir Douglas Mawson's list of specially bright auroras contains three more examples, but they refer to dates subsequent to the stoppage of the magnetograph. All included, Sir Douglas' list contains only nine occasions of bright coloured aurora in'1913; as compared with 19 in 1912, and the five displays which he considered the most notable all. occurred in 1912. As our discussion will have shown, some of the occasions of bright coloured aurora in 1913 exhibited little trace of magnetic disturbance, and none of them were accompanied by magnetic disturbance which at all rivalled in intensity that displayed on several occasions during 1912. This is quite in keeping with the results of the more exhaustive investigation summarised in Table LXXIII.
$\because \quad 1913$ was the year of sunspot minimum, Wolfer's frequency for the year being 1.4 as compared with 3.6 for 1912 , and 9.6 for 1914; but the decline in sunspot frequency from 1912 to 1913 appears trifling as compared with the decline in auroral or magnetic activity at Cape Denison.

Table LXX.-Auroral and Magnetic Hourly Characters.

Table LXXI.-Expectation of Magnetic Disturbance during Hours when Aurora Visible and Invisible.

Table LXXİI-Occasions of Brighter Aurora.

March, 1912.

May, 1912.

Table LXXII.-Continued.

May, 1912.

Junc, 1912.
S21|30 3|1158

$|$| A. | 6 |
| :---: | :---: |
| A.S. | \ldots |
| C. | 90 |
| A. | 65 |
| C. | 45 |
| B. | 35 |
| B. | 90 |
| A. | 15 |
| \ldots | \ldots |
| A. | 7 |
| \ldots | \ldots |
| - C. | \ldots |

Table LXXII.-Continued.

Table LXXII-Continued.

Table LXXII-Continued:

Juily 1912.

$\left.141175^{57} 7^{14}\right|^{8 / 20}$ | \ldots. | 22 | 35 | \ldots | 13 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 04 | 15 | | 18 | 44 | | 15 | 04 | 15 | \ldots | 18 | 44 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \ldots. | 06 | 45 | \ldots | 21 | 14 | | $\ldots .$. | 06 | 45 | \ldots | 21 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | 18 | 00 | 15 | 8 | 29 | - 1806001712029 20003919158

 $2106|00| . .|20| 20 \mid$

\cdots	C.	80
$\ldots .$.	B.S.	\cdots
\ldots	B	\ldots
\ldots	C.	90
\ldots	A.	5
\ldots.	C.	30
\ldots	C.P.	40
\ldots	A.S.	30
\ldots	C.A.	90

| N.E. | \|14| 8 | | |
| :---: | :---: | :---: | :---: |
| N.E. | 13 | 3 E. | \cdots |
| N. W. | I8 | ... | \ldots |
| | .. 21 | \cdots | $5-$ |
| N.E. | 158 | 45 E . | 59 |
| N.N.E. | 1720 | 26 W . | |
| N.E. | 1915 | 26. E. | |
| N. | 2012 | \cdots | $33+$ |
| | . 20 | 15 E. | |

\cdots	5
\cdots	14
\cdots	7
\cdots	13
$59-$	14
$44+$	26
\cdots	14
\cdots	32
\cdots	9

			Rather quiet	\ldots
\ldots	\ldots	No trace.		
\ldots	Small undulations	\ldots	\ldots	No trace.
\ldots	Rather quiet.	\ldots	\ldots	No trace.
\ldots	Undulations	\ldots	\ldots	No trace.
\ldots	Bay $-+\quad .$.	\ldots	\ldots	Bay.+
\ldots	Irregular $\quad .$.	\ldots	\ldots	Irregular.
\ldots	Small oscillations	\ldots	\ldots	Irregular.
\ldots	Irregular ...	\ldots	\ldots	Iregular rise.
\ldots	Small oscillations	\ldots	\ldots	Small oscillations.

- MAGNETIC DISTURBANCE-CHREE.

Aug., 1912.
.3|22|50| $3|13| 1$
420

 ... 19 36 3 ... 10 $\cdots 2100 . . .1129$

7	01	22	\therefore	15	51
10	05	20	9	10	10

11	19	30	11	9
59				

$12210012 \mid 1120$
\ldots
\ldots
\ldots
y.p.g.
\ldots
\ldots
\ldots
\ldots
\ldots
\cdots
\ldots
\ldots
\ldots
\ldots
\ldots
\ldots
\ldots

C.S.	40
C.	90
C.	4
C.	.
A.	3
A.	8
A.	\cdots
B.	
C. .	12
C.	
C.	1
C.	\cdots
C.A.	
B.	1
C.	
A.	

N.	\| $\begin{gathered}3 \\ . .13 \\ 20\end{gathered}$	31 W.	20-
E.N.E.	66	...	$40+$
...	... 7	12 E.	$20-$
E.	... 8
N.E.		$54 . \mathrm{E}$.	$54+$
...	$\ldots 10$	33 W .	$50-$
N.E.	... 11	0 E.	48-
N.N.E.	... 12	45 W
N.E.	... 13	. 8 E .	\ldots
N.	... 15	0 W
...	919	55 E .	\ldots
\cdots	1012	59 E .	\ldots
- N.E.	11.9		15-
N.			73
		53.)	42)
N :	1211	55 W.	

\(\left.\left\lvert\, \begin{array}{c|c}··· \& 28

48+ \& 22

40+ \& 186

1- \& 211

\cdots \& 30

54+ \& 71

59- \& 47

48- \& 21

\cdots \& 45

27+ \& 39

15- \& 20

50- \& 31

27- \& 14

15- \& 8

8

42\end{array}\right.\right\} \left.+\)| 10 |
| ---: |
| \cdots |
| \cdots | \right\rvert\,

Irregular	\cdots	Oscillatory fall.
Irregular	Irregular.
Bay - + after rise	...	Bay - + after rise.
Bay. + after rise	.	Bay - + after rise.
Nearly stcady rise	Fairly regular rise.
Irregular ...	\ldots	Bay + - after fall.
Irregular	..	Bay + - after fall.
Bay + -	\ldots	Bay + -
Rise, small oscillations	.	Irregular, oscillations.
Irregular -...	.	Bay + -
Irregular ...		Irregular.
Irregular	Irregular.
Small oscillations	.	Small oscillations.
Small oscillations *..	...	Small oscillations.
Two bays each + -		Two bays each + -
Rather quiet ...	\ldots	Rather quiet.

Table LXXII.-Continued:

Table LLXXII.-Continued.

Table LXXII.-Continued.

July, 1913.

Table LXXII-Continued.

July, 1913.

9
9
9
9
9
4
4
4
4
7
4
9
5
9
9
3
49

...	B.	10
...	A.	15
\ldots	C.S.	...
\ldots	A.	\cdots
\ldots	A.	7
\cdots	C.	90
\ldots	A.S.	15
\cdots	A.	12
...	A.	15
\cdots	C.G.	15
\cdots	C.	45
\ldots	A.	3
\cdots	C.	90^{\prime}
\cdots	\ldots	18
...	A.	12

Atg., 1913.
$\left.\left.{ }^{1}{ }^{033} 000\right|_{|c|} ^{*}{ }^{17}{ }^{17}\right|^{29} \mid$

.0346	* $\left\|\begin{array}{c}17 \\ 18 \\ 18 \\ 15\end{array}\right\|$
05	* 19.59
© 2321	51350
60015	51444
.. 1830	6. 859
20.00	$\therefore 1020$
2136	... 12
80400	$718{ }^{29}$

\cdots	C.	10
\cdots	C.	30
\cdots	C.	00
\cdots	C.	90
\cdots	C.	5
\cdots	A.	20
\cdots	B.P.	10
\cdots	A.	12
\cdots	A.	12
\cdots	C.	00

| | \|‥| ${ }^{8}$ | |
| :---: | :---: | :---: |
| | ... | 10 W. |
| | 10 | 20 |
| N. | ... 11 | |
| N. | ... 12 | |
| | 2715 | 25 W |
| E.N.E. | 2811 | |
| E.N.E | ... 12 | 6 |
| N. | ... 13 | 50 |
| N. | ... 15 | ... |
| N.N.E | ... 10 | 31 E . |
| N. | ... 15 | |
| | | |
| E.N.E | 3010 | 31 E. |
| N.N.W | 31 | |

 | \ldots | 6 |
| :---: | ---: | ---: |
| \ldots | 7 |
| $25-$ | 12 |
| \ldots | 6 |
| \ldots | 10 |
| $45-$ | 13 |
| \ldots | 13 |
| $8+$ | 10 |
| $42+$ | 10 |
| \ldots. | 9 |
| \ldots | 8 |
| \ldots | 8 |
| \ldots | 12 |
| \ldots | 13 |
| \ldots | 8 |

	Undulatio
Irregular	
I	Irrogul
5	Irregu
Irregu	
1	Undu
3	Bay
8	Bay
2	Bay E
8	Irregu
5	Irregu
9	Small
0	Irregu
0	Bay E
5	Irregul

Irregular \quad..	Irregular.
Undulations ...	Undulations.
Irregular	Irregular.
Irregular ...	Irregular.
Irregular $\quad \therefore$	Irregular. .
Irregular	Irregular.
Rather quiet	Bay +.-.
Undulations	Bay + -
Bay + - ...	Bay + -
Undulations	Irregular.
Undulations	Rather quiet.
Short period oscillations	Short period 03cillations.
Irregular	Irregular fall.
Irregular	Irregular.
Irregular	Irregular.

Irregular\quad... $\begin{aligned} & \text { Irregular. }\end{aligned}$
\qquad

Tabce LXXIII. -Hourly Ranges on Occasions of Bright Aurora:

AUSTRALASIAN ANTARCTIC EXPEDITION. 329
LIST OF TABLES.
Table. Page.
XVIII. Daily Character, Cape Denison, International and Cape ..Evans Figures 203.
XIX. Dates Selected Disturbed and Quiet Days, and Cape Denison Character Figures thereon 204
XX. International and Cape Denison Character Figures. Mean Monthly Values 204
XXI. Analysis of International and Cape Denison Character Figures 205
XXII. Cape Evans and International Character Figures (Mean Monthly Values) associated with Cape Denison Characters, 2,1 and 0 205
XXIII. Association of Magnetic Characters at Cape Denison and Cape Evans 205
XXIV. 27-day Interval. Sum of Cape Denison Character Figures 206
XXV. April, 1912. Squares of Daily Ranges (Unit 100: γ^{2}) and Ratios 229
'XXVI. May, 1912. 230
XXVII. June, 1912. 231
XXVIII. July, 1912. 232
XXIX. August, 1912. ; 233
XXX. September, 1912. 234
XXXI. October, 1912. , 235
XXXII. November, 1912, to February, 1913. 236
XXXIII. March, 1913, to May, 1913. , 237
" • ",
XXXIV: June, 1913, and July; 1913. ". 238
XXXV. Activity Ratios from Mean Monthly Values 239
XXXVI. Sums of Squares of Daily Ranges-Monthly Means (unit $100 \gamma^{2}$) 239
XXXVII. International Character Figures and Values of ΣR^{2} at Cape Denison 239
XXXVIII. International Character Figures and Cape Denison Character Ratios 240
XXXIX. Cases when $\Sigma \mathrm{R}^{2}$ from Horizontal Components Above and Below the Mean at Pairs of Stations 240
XL. Cases when Vertical Force Range Above and Below the Mean at Pairs of Stations Compared. 240
XLI. Squares of Daily and Hourly Ranges. June, 1912 241
XLII. Squares of Daily and Hourly Ranges. September, 1912 242
XLIII: Antarctic Daily; and Hourly Character Ratios and International Characters. June, 1912 243
£2032-S
£2032-S
MAGNETIC DISTURBANCE \because CHREE.
LIST OF TABLES. \because Continued.
Table. ${ }^{-}$Page
XLIV.: Antarctic Daily and Hourly Character Ratios andi;International Characters. September, 1912 244
XLU. Daily and Mean Hourly Values at Cape Denison 263
XLVI. Least and Greatest Valuès of Mean' Hourly Value for'Days of Daily Characters 0, 1 and ${ }^{2}$ 264.
XLVII: Cape Denison-Mean Hourly Character Figures 264
XLVIII. Cape Denison. Hourly Characters: Number of 0's 265
XLIX. Cape Denison. Hourly Characters. Number of 2's 266
L. Cape Evans-Mean Hourly Character Figures 267
LI. Cape Evans-Hourly Characters. Number of 0's 267
LII. Cape Evans-Hourly Characters. Number of 2's 267
LIII. Eskdalemuir-Mean Hourly Character Figures 268
LIV. Eskdalemuir-Hourly Characters. Number of 0's 269
LV. Eskdalemuir-Hourly. Characters. Number of 2's 270
LVI. Hourly Characters at Cape Denison and Cape Evans-Occurrences 271
Ditto (continued) 272
Ditto (continued) 273
LVII. Hourly Characters at Cape Denison and Eskdalemuir-Occurrences 273
Ditto (continued) 274
Ditto (concinued) 275
LVIII. Hourly Characters at Cape Denison and Cape Evans 276
LIX. Hourly Characters at Cape Denison and Eskdalmuir: 277
LX. \cdots Hourly Characters at Cape Evans and Cape Denison. 278
LXXI. Hourly Characters at Eskdalemuir and.Cape Denison 278
LXII. Ranges during Hours when Character 0 at Cape Denison, but 2 at Cape Evans 278
LXIII. Ranges during Hours when Character 2 at Cape Denison; but 0 at Cape.Evans 279
LXIV. Ranges during Hours when Character 0 at Cape Denison, but 2 at Eskdalemuir 279
LXV. Hourly.Range Data at: Capé'Denison and:Cape Evans. .June, 1912... 280
LXVI. Hourly RangeiData at Cape Denison and Cape Evans. "September, .1912 281

LIST OF. TABLES.-Continued.Table.PAGE:
LXVII. Hourly Range and Inequality Change at Cape Denison and Cape Evans. 282
LXVIII. Diurnal Variation from Squares of Hourly Ranges at Cape Denison 283
LXIX. Diurnal Variation from Squares of Hourly Ranges at Cape Evans. 284
LXX. Auroral and Magnetic Hourly Character 317
LXXI. Expectation of Magnetic Disturbance during Hours when Aurora Visible and Invisible. 317
LXXII. Occasions of Brighter Aurora 318
Ditto (continued) 319 319
Ditto (continued) : 320
Ditto (continued) 321
Ditto (continued) 322
Ditto (continued) 323
Ditto (continued) 324
Ditto (continued) 325
Ditto (continued) 326
Ditto (continued) 32%
LXXXIII. Hourly Ranges on Occasions of Bright Aurora 328

[^0]: aUSTRALASIAN ANTARCTIC EXPEDITION.

[^1]: $\ddagger 2032-\mathrm{H}$

[^2]:

[^3]: * Records of the Aurora Polaris, p. 167.

[^4]: * Records of the Aurora Polaris, ' p. 166.

[^5]: $\ddagger 2032$ —P

